中国空间科学技术 ›› 2018, Vol. 38 ›› Issue (1): 70-76.doi: 10.16708/j.cnki.1000-758X.2018.0012

• 技术交流 • 上一篇    下一篇

基于日地月信息的航天器全弧段自主容积卡尔曼滤波导航

邓广慧1,廖卓凡1,朱蓉2,3,王炯琦2,*   

  1. 1. 长沙理工大学计算机与通信工程学院综合交通运输大数据智能处理湖南省重点实验室,长沙  410004
    2. 国防科学技术大学理学院,长沙  410073
    3. 中国人民解放军91550部队,大连  116023
  • 收稿日期:2017-03-16 接受日期:2018-01-15 出版日期:2018-02-25 发布日期:2020-02-12
  • 通讯作者: 王炯琦(1979-),男,副教授,博士,wjq_gfkd@163.com,研究方向为信息融合理论及应用,空间目标状态融合估计
  • 作者简介:邓广慧(1979-),女,讲师,gracedgh@163.com,研究方向为空间目标状态估计,大数据智能分析与处理
  • 基金资助:
    民用航天技术预研项目(E020419); 国家自然科学基金(61773021, 61402056, 61703408)

Spacecraft autonomous navigation with cubature Kalman filter based on sun-earth-moon information#br#

DENG Guanghui1, LIAO Zhuofan1, ZHU Rong2,3, WANG Jiongqi2,*   

  1. 1. Hunan Provincial Key Laboratory of Intelligent Processing of Big Data onTransportation, School of Computer and Communication Engineering, C hangsha University of Science and Technology, Changsha 410004, China
    2. College of Science, National University of Defense Technology, Changsha 410073, China
    3. PLA91550, Dalian 116023, China
  • Received:2017-03-16 Accepted:2018-01-15 Published:2018-02-25 Online:2020-02-12

摘要: 高精度全弧段航天器自主导航是航天应用技术的发展方向,是实现航天器在轨任务执行的前提和基础。文章对仅利用日、地、月等天文信息进行航天器全弧段自主导航方法进行了研究。首先,以航天器轨道动力学方程和航天器与日地月之间的夹角信息及地心距作为自主导航系统的状态模型和观测模型,构建了非线性导航系统模型。其次,给出了全弧段自主导航算法,在日月可见弧段采用非线性容积卡尔曼滤波实现航天器自主导航,在星蚀时段利用航天器轨道动力学模型进行高精度轨道预报。最后,给出了数值仿真算例。结果表明,基于日地月天文信息的航天器全弧段自主导航精度保持在2km以内,能够满足其自主导航的要求。

关键词: 航天器, 自主导航, 星蚀时段, 可观测性, 容积卡尔曼滤波, 轨道预报

Abstract:

High-precision and all-time spacecraft autonomous navigation is the development direction in the space technology application, and is also the foundation for the actual on-orbit application for the spacecraft. An autonomous navigation algorithm for spacecraft base on the astronomical information of the sun, the earth and the moon was researched. Firstly, by using the dynamics equations and the angles between the spacecraft, the earth, the sun and the moon, as well as the distance between the spacecraft and the earth as the state model and observation model respectively, the navigation system was established. Then, the autonomous navigation algorithm was presented. When the sun and the moon were observable, the autonomous navigation through the nonlinear cubature Kalman filter (CKF) was adopted; and the high-precise orbit prediction algorithm was used to predict the orbit by using the track dynamics directly during the eclipse. Finally, the numerical simulation was provided. Results show that the positioning accuracy of this method is lower than 2km, which is enough to satisfy the autonomous navigation.

Key words:

spacecraft, autonomous navigation, eclipse, observability, cubature Kalman filter, orbit prediction