中国空间科学技术 ›› 2020, Vol. 40 ›› Issue (4): 29-37.doi: 10.16708/j.cnki.1000-758X.2020.0042

• 电推进专栏 • 上一篇    下一篇

温度对磁屏蔽霍尔推力器磁场构型的影响研究

赵震,程佳兵,康小录   

  1. 1 上海空间推进研究所,上海201112
    2 上海空间发动机工程技术研究中心,上海201112
  • 出版日期:2020-08-25 发布日期:2020-07-20

Effect of temperature on magnetic field configuration of magnetically shielded Hall thruster#br#

ZHAO Zhen,CHENG Jiabing,KANG Xiaolu   

  1. 1 Shanghai Institute of Space Propulsion, Shanghai201112, China
    2 Shanghai Engineering Research Center of Space Engine, Shanghai201112, China
  • Published:2020-08-25 Online:2020-07-20

摘要: 霍尔推力器磁路设计主要通过常温静态磁场仿真得到,并实测推力器非工作状态常温磁场进行复核。大功率霍尔推力器将面临更为严峻的热问题,推力器工作时磁路系统受高温影响,因此在常温下仿真得到的磁场位形会因温度升高而产生偏移,不能反映推力器真实工作时的磁场情况。为研究霍尔推力器工作时热量对磁路系统的影响,通过热磁耦合仿真对10kW磁屏蔽霍尔推力器的热态磁场分布进行研究,并对热态、常温仿真结果进行了对比,发现在阳极附近的径向磁感应强度Br的差异比放电室出口更大。常温设计的磁屏蔽构型在热态时偏离磁屏蔽,磁场和壁面最大不符合度达到13%,通过陶瓷出口型面修正后重新获得磁屏蔽效果,使最大不符合度降低到4.8%以下。合理热设计有助于降低热载荷,热仿真得到磁路系统最高温度低于500℃,低于0.78倍的居里温度Tc磁性急剧转变点,不会出现磁性能急剧下降,但热量对磁屏蔽霍尔推力器磁场构型的影响是应该考虑的。

关键词: 磁屏蔽霍尔推力器, 常温磁场仿真, 热磁耦合仿真研究, 最佳磁屏蔽位形, 磁场和陶瓷壁不符合度

Abstract: Magnetostatic simulation in room temperature condition is mostly applied for Hall thruster design and verified with measurement in non-working state. Severer thermal issues will be addressed for larger power Hall thrusters and result in magnetic deviation under high temperature. In order to study thermal influence, 10kW Hall thruster thermomagnetic coupling simulation was carried out. Comparing both results, discrepancy of magnetic radial component on Br centerline near anode was larger than that in exit. Magnetic shielding obtained in room temperature simulation was deviated in thermal state with non-compliance between field and wall up to 13%, through wall shape recorrection, magnetic shielding was restored with noncompliance below 4.8%. Reasonable design reduced thermal loads. Simulation showed that the maximal circuit temperature was less than 500℃, lower than 0.78 times of Curie temperature, which would not lead to sharp drop in magnetic performance, but thermal impact on magnetic configuration needs to be considered in magnetic shielding simulation.

Key words: magnetically shielded Hall thruster, magnetic simulation in room temperature condition, thermo-magnetic coupling simulation, optimal magnetic shielding configuration, non-compliance between magnetic field with ceramic wall