中国空间科学技术 ›› 2021, Vol. 41 ›› Issue (4): 134-141.doi: 10.16708/j.cnki.1000-758X.2021.0060
• 论文 • 上一篇
袁伟,许文波,周甜
YUAN Wei,XU Wenbo,ZHOU Tian
摘要: 传统的根据光谱特征或形态学算法来分割道路,存在精度低、阈值难确定等缺点,而深度学习中已有的方法并未考虑道路的特性,只是利用通用方法来分割道路。针对上述不足,提出了一种针对道路特有形态的深度学习损失函数——形态损失函数。首先使用连通性算法将预测结果划分为若干个相互分离的连通区域,分别计算这些区域的面积与外接圆面积的比值,然后取平均值作为此批训练数据的形态损失函数,最后将形态损失函数按一定的比例与交叉熵损失函数求和,得到最终的损失函数。通过在公开的遥感数据集上使用深度学习网络进行对比试验,附加了形态损失函数后平均交并比(MIoU)、准确度(ACC)及F1Score均有提高。从预测的图形来看,附加了形态损失函数后,预测的道路更为连续。所提出的形态损失函数可用于提高光学遥感影像道路分割的精度。