中国空间科学技术 ›› 2022, Vol. 42 ›› Issue (3): 105-113.doi: 10.16708/j.cnki.1000-758X.2022.0041
孔嘉嫄,张和生
KONG Jiayuan ,ZHANG Hesheng
摘要: 高分辨率遥感图像分割在军事、民用等领域具有良好的应用前景,但由于复杂的背景条件以及干扰物的遮挡,导致现有算法无法较好地从遥感影像中提取道路细节信息。研究基于改进UNet网络模型,提出了MDAU-Net(multi dimension attention U-Net)网络结构模型,通过对U-Net网络结构加深至七层结构来提升精细分割道路的能力;并提出了一种多维注意力模块MD-MECA(multi dimension modified efficient channel attention),将其添加至编码部分的特征传递步骤中,以达到对编码部分的特征传递进行优化的目的;其中利用DropBlock与Batch Normalization解决网络训练过程中出现的过拟合。试验结果表明:改进后算法可以有效提升道路的提取效果,在测试集上的准确率达到了97.04%。