中国空间科学技术 ›› 2023, Vol. 43 ›› Issue (1): 44-52.doi: 10.16708/j.cnki.1000-758X.2023.0004

• 论文 • 上一篇    下一篇

考虑能量最优的集群航天器避碰规划

赵腾,康国华,陶新勇,许传晓,武俊峰   

  1. 南京航空航天大学 航天学院,南京211101
  • 出版日期:2023-02-25 发布日期:2023-01-13

Cluster collision avoidance trajectory planning for modular spacecraft with optimal energy

ZHAO Teng,KANG Guohua,TAO Xinyong,Xu Chuanxiao,WU Junfeng

#br#
  

  1. Nanjing University of Aeronautics and Astronautics,Nanjing 211101,China
  • Published:2023-02-25 Online:2023-01-13

摘要: 针对传统集群聚集算法在航天器集群规划应用中存在燃料消耗大、不均衡以及耗时过长等问题,提出了向心聚集的能量最优聚类避碰算法。该算法首先基于集群相对运动方程与有限时间的能量最优模型,建立了自适应的向心聚集的能量最优模型;在此基础上,对于耗时较长且碰撞的问题,提出一种基于能量最优的聚类避碰算法,以模块间安全距离矢量作为避碰约束,将能量消耗作为聚类算法指标进行改进。仿真验证表明,该算法可以自适应选取集群聚类的中心,有效避免碰撞,减少集群聚集总能量的消耗以及模块间能量消耗的不均衡性,使得工质消耗达到全局最优,且耗时仅有常规遗传算法的万分之一。该算法为集群快速安全聚集提供了思路。

关键词: 卫星集群, 轨迹规划, 能量最优, 聚类避碰, 有限时间约束

Abstract: Aimed at solving the problems of large fuel consumption,imbalance and long timeconsumption in the application of traditional cluster aggregation algorithm in spacecraft cluster planning,an energy optimal clustered collision avoidance algorithm based on centripetal aggregation was proposed.Firstly,based on the relative motion equation of the cluster and the finitetime energy optimization model,the energy optimal model of adaptive centripetal aggregation was established by the algorithm.On this basis,for the problem of long time-consumption and collision,a cluster collision avoidance algorithm based on energy optimization was proposed.The safe distance vector between modules was used as the collision avoidance constraint,and the energy consumption was used as the clustering algorithm index.The simulation results show that the algorithm can adaptively select the center of cluster clustering,effectively avoid collision,reduce the total energy consumption of cluster aggregation and the imbalance of energy consumption between modules,so that the working fluid consumption is globally optimal,and the time consumption is only one ten thousandth of that of the conventional genetic algorithm.This algorithm provides an idea for rapid and safe clustering of clusters.

Key words: cluster aggregation, trajectory planning, optimal energy, collision avoidance clustering, finite time constraint