中国空间科学技术 ›› 2023, Vol. 43 ›› Issue (2): 73-80.doi: 10.16708/j.cnki.1000-758X.2023.0022
周锦雯,刘乃金,陈清霞
ZHOU Jinwen,LIU Naijin,CHEN Qingxia
摘要: 在边缘计算增强的低轨卫星网络场景下,低轨卫星集群协同处理地面任务能有效降低用户响应时延。对卫星集群的联合卸载决策和资源分配优化问题进行研究,将其描述为一个混合整数规划问题,并采用了一种基于分布式深度学习算法的卫星边缘计算卸载算法(deep learningbased offloading algorithm,DLOA)。该算法使用多个并行DNN用于生成卸载决策并采用经验回放存储新生成的卸载决策,当采用隐藏层结构不同的DNN,收敛速度比同构DNN提升18%,收敛值与最优值的比值基本为1,可以认为已收敛至最优。此外,探讨了DNN的数量对所使用的算法的影响,仿真结果表明采用少量DNN就可以获得近优的收敛效果。通过对不同任务规模下采用不同算法的任务完成率进行研究,结果表明DLOA算法可通过采用异构DNN和优化资源分配方案显著提升完成率,其较单星运算方案任务完成率提升1倍,较二进制粒子群算法方案提升20%。