中国空间科学技术 ›› 2024, Vol. 44 ›› Issue (6): 81-87.doi: 10.16708/j.cnki.1000-758X.2024.0093

• 综述 • 上一篇    下一篇

同位素热光伏电源热设计及优化研究

苏生1,2,*,王旭3,戴承浩1,2,邱家稳4,田岱1,马彬1,韩承志1   

  1. 1.北京空间飞行器总体设计部,北京100094
    2.空间热控技术北京市重点实验室,北京100094
    3.中国核动力研究设计院,成都610041
    4.中国空间技术研究院,北京100094
  • 收稿日期:2023-07-07 修回日期:2023-09-14 录用日期:2023-10-30 发布日期:2024-12-03 出版日期:2024-12-05

Design and optimization of thermal control for RTPV

SU Sheng1,2,*,WANG Xu3, DAI Chenghao1,2,QIU Jiawen4,TIAN Dai1,MA Bin1,HAN Chengzhi1   

  1. 1.Beijing Institute of Spacecraft System Engineering,Beijing 100094,China
    2.Beijing Key Laboratory of Space Thermal Control Technology,Beijing 100094,China
    3.Nuclear Power Institute of China,Chengdu 610041,China
    4.China Academy of Space Technology,Beijing 100094,China
  • Received:2023-07-07 Revision received:2023-09-14 Accepted:2023-10-30 Online:2024-12-03 Published:2024-12-05

摘要: 为控制同位素热光伏电源的热源温度,提高热电转换效率,提出了基于气凝胶离散间隔高温多层的高温热控方法,并建立了相应的热模型。对不同热源功率工况进行仿真,热源温度的计算值与试验结果吻合良好,验证了模型的准确性和适用性。利用模型分析了同位素热光伏电源热性能,结果表明:针对该构型电源,当发射器发射率为0.145、反射屏发射率为0.162时,热源温度为1078 ℃;热源温度随发射器发射率和反射屏发射率的下降均呈单调升高趋势;高温多层单元数小于20时,增加单元数可显著提升多层隔热性能。研究结果为同位素热光伏电源热设计和优化提供了依据。

关键词: 同位素热光伏, 离散间隔多层, 发射器发射率, 反射屏发射率, 单元数

Abstract: In order to control the heat source temperature and to improve the thermoelectric conversion efficiency of RTPV, a high-temperature thermal control method based on aerogel discrete spacer MLI is proposed, and the thermal model is established. The accuracy and applicability of the model are verified by experimental results. The thermal performance of the RTPV is analyzed by using the model. The results show that the heat source temperature is 1078 ℃ when the emissivity of the emitter is 0.145 and that the emissivity of the reflector is 0.162. The heat source temperature increases monotonously with the decrease of the emitter emissivity and the reflector emissivity. When the number of MLI layers is less than 20, increasing the number of layers can significantly improve the insulation performance of MLI. The results provide a basis for thermal design and optimization of RTPV.

Key words: RTPV, discrete spacer MLI, emitter emissivity, reflector emissivity, MLI layer number