中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (2): 103-113.doi: 10.16708/j.cnki.1000-758X.2025.0028

• 论文 • 上一篇    下一篇

离子液体电喷推力器仿真及性能优化分析

潘宁1,2,耿海2,郭宁2,曲富饶1,雪佳强2,孟伟2,*,刘坤1,*   

  1. 1.东北大学 机械工程与自动化学院,沈阳110000
    2.兰州空间技术物理研究所,兰州730000
  • 收稿日期:2023-10-08 修回日期:2024-01-03 录用日期:2024-01-23 发布日期:2025-03-13 出版日期:2025-04-01

Simulation and performance optimization analysis of ionic liquid electrospray thruster

PAN Ning1,2,GENG Hai2,GUO Ning2,QU Furao1,XUE Jiaqiang2,MENG Wei2,*,LIU Kun1,*   

  1. 1.School of Mechanical Engineering and Automation, Northeastern University,Shenyang 110000,China
    2.Lanzhou Institute of Physics,Lanzhou 730000,China
  • Received:2023-10-08 Revision received:2024-01-03 Accepted:2024-01-23 Online:2025-03-13 Published:2025-04-01

摘要: 随着航天技术的发展,离子液体电喷推力器(ILET)因其高效、稳定性较好的特性逐渐受到重视。为了研究ILET的性能上限,有必要深入探究其喷射特性,进而确定工艺参数和结构参数的最佳参数组合。基于电场与流场相耦合的方法对ILET喷射过程进行模拟,采用响应面法(RSM)对性能参数进行分析,进一步得到最佳操作参数和结构参数。发射极直径为20μm,高度为119.384μm,流量为3.45×10-2nL/s,电压为2188.249V时,最大推力为1.464μN;直径为48μm,高度为119μm,流量为1.9×10-2nL/s,电压为2600V时,最大比冲为1077.543s。结果表明仿真与模型得到的相关结果与实验结果基本吻合,误差范围均在5%以内,验证了该模型的可靠性。创新性地将电场与流场耦合方法和响应面法相结合,不仅提升了分析精度,也为类似复杂系统的性能评估开辟了新的研究途径。此外,这一研究为ILET在航天领域的应用提供了坚实的理论基础,展现了其在未来航天任务中的广泛应用潜力。

关键词: 离子液体, 响应面法, 性能优化, 参数分析, CFD

Abstract: As aerospace technology advances, ionic liquid electrospray thrusters (ILET) are gaining attention for their efficiency and stability. This study delves into the performance limits of ILET by simulating the electrospray process, using a coupled electric and flow field approach. Performance parameters are analyzed by using the response surface methodology (RSM), leading to optimal operational and structural parameters. The findings indicate that, with a 20μm emitter diameter, 119.384μm height, 3.45×10-2nL/s flow rate, and 2188.249V voltage, the maximum thrust is 1.464μN; with a 48μm diameter, 119μm height, 1.9×10-2nL/s flow rate, and 2600V voltage, the highest specific impulse reaches 1077.543s. The simulation and model results align closely with experimental data, with an error margin within 5%, confirming the model's reliability. Innovatively combining electric and flow field coupling with RSM not only enhances analytical precision, but also opens new avenues for evaluating similar complex systems. Furthermore, this research provides a solid theoretical foundation for ILET's application in aerospace, demonstrating its potential for future space missions.

Key words: ionic liquid, response surface methodology, performance optimization, parameter analysis, CFD