中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (6): 141-151.doi: 10.16708/j.cnki.1000-758X.2025.0096

• 论文 • 上一篇    

具有迟滞特性的微流体比例阀改进复合控制算法

王旋,庞爱平*,勾应翠   

  1. 贵州大学 电气工程学院,贵阳550025
  • 收稿日期:2025-02-26 修回日期:2025-04-22 录用日期:2025-04-25 发布日期:2025-11-17 出版日期:2025-12-01

Improved hybrid control algorithm for hysteresis-based microfluidic proportional valves

WANG Xuan,PANG Aiping*,GOU Yingcui   

  1. School of Electrical Engineering,Guizhou University,Guiyang 550025,China
  • Received:2025-02-26 Revision received:2025-04-22 Accepted:2025-04-25 Online:2025-11-17 Published:2025-12-01

摘要: 针对航天电推进贮供系统微流体比例阀在宽域流量控制中存在的迟滞非线性补偿精度不足、复杂干扰下动态响应劣化等难题,提出一种改进Bouc-Wen迟滞模型前馈补偿与反馈协同的复合控制算法。通过引入动态速率补偿项和非对称迟滞算子,构建非对称速率Bouc-Wen迟滞模型以重构迟滞环方程,采用改进粒子群优化算法将模型参数辨识的均方误差较PSO降低43.2%。基于该模型设计前馈-反馈复合控制器,通过迟滞模型补偿与PI反馈误差校正的协同优化系统性能。实验表明:算法使系统阶跃调节时间从PI控制的1.1s 缩短至0.425s(提升61.4%),方波跟踪均方根误差由1.83kPa降1.2kPa(降低34.4%),且在350kPa阶跃干扰下恢复时间仅0.24s,超调量稳定在0.8%以内。提出的改进Bouc-Wen迟滞模型与动态增益复合控制方法,解决了非线性精准补偿与动态鲁棒控制的协同难题,相比现有复合控制策略动态响应速度提升30%以上,为航天器推进系统提供宽域高精度、强抗扰(超调量<1%)的工程实践方案。

关键词: 贮供系统, 流体比例阀, 迟滞模型, 系统辨识, 复合控制

Abstract: To address insufficient hysteresis nonlinearity compensation accuracy and deteriorated dynamic response under complex disturbances in wide-range flow control of microfluidic proportional valves for aerospace electric propulsion storage and feed systems, a composite control algorithm is proposed integrating improved Bouc-Wen hysteresis model feedforward compensation with feedback coordination. An asymmetric rate-dependent Bouc-Wen hysteresis model is developed by incorporating dynamic rate compensation terms and asymmetric hysteresis operators to reconstruct hysteresis loops. A modified particle swarm optimization (IPSO) algorithm is implemented for parameter identification, reducing mean square error by 43.2% compared with standard PSO. A feedforward-feedback composite controller is designed based on this model, synergistically optimizing hysteresis compensation and PI error correction. Experimental validation demonstrates that step response time is reduced from 1.1s (PI control) to 0.425s (61.4% improvement), that root mean square error in square-wave tracking decreases from 1.83kPa to 1.2kPa (34.4% reduction), and that recovery time under 350kPa step disturbance reaches 0.24s with overshoot consistently below 0.8%. The proposed improved Bouc-Wen hysteresis modeling and dynamic gain hybrid control method addresses the critical challenge of synergistic optimization between precise nonlinear compensation and dynamic robustness. Compared with existing composite strategies, dynamic response speed increases by over 30%, providing a high-precision (steady-state error <1%), strong anti-disturbance (overshoot <1%) engineering solution for spacecraft propulsion systems across wide operational domains.

Key words: storage and feed system, fluid proportional valve, hysteresis model, system identification, hybrid control