Chinese Space Science and Technology ›› 2016, Vol. 36 ›› Issue (6): 38-46.doi: 10.16708/j.cnki.1000-758X.2016.0070
Previous Articles Next Articles
JIN Yong-Tao1,3,4, LI Xu-Qing1,3,4, ZHANG Zhou-Wei2, CHEN Xi1
Received:
Revised:
Published:
Online:
Abstract: Aimingattheproblemthatthetraditionalimagesegmentationalgorithmscannotbeappliedtohighresolutionremotesensingimageswithmanyfeatures(spectral,textureandgeometricfeatures),aremotesensingimagesegmentationmethodbasedonmulti-featurewasproposed.Thealgorithmintegratedtheimprovedmeanshiftfilteringandautomaticmarkerwatershedtoachievethesegmentationperformance.Firstly,anautomaticmarkerwatershedmethodwasusedtosegmenttheremotesensingimageforextractinggeometricfeatureusingaffinemomentinvariantsofshapeoperator.Secondly,agraylevelco-occurrencematrixofthefirstprincipalcomponentwascalculatedastexturalfeature.Thirdly,multi-featurefilteringresultswereobtainedbyusingimprovedmeanshiftalgorithmincludingspectralfeature.Finally,thefilteringresultswereperformedusingtheautomaticmarkerwatershedsegmentationmethod.Inordertoshowtheeffectoftheproposedmethod,anunsupervisedevaluationandcomparisonoftheimagesegmentationfromtheproposedalgorithmandsinglewatershedsegmentationwereimplementedusingmulti-spectralinformationentropy.Theexperimentalsegmentationresultsshowthattheproposedalgorithmcanreducetheover-segmentationphenomenonefficientlyanditissuitedforthesegmentationofhigh-resolutionmulti-spectralremotesensingimage.
Key words: meanshift, multi-feature, watershedtransform, high-resolutionremotelysensedimagery, imagesegmentation
JIN Yong-Tao, LI Xu-Qing, ZHANG Zhou-Wei, CHEN Xi. Segmentationofhigh-resolutionmulti-spectralremotesensingimagebasedonmulti-feature[J]. Chinese Space Science and Technology, 2016, 36(6): 38-46.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://journal26.magtechjournal.com/kjkxjs/EN/10.16708/j.cnki.1000-758X.2016.0070
https://journal26.magtechjournal.com/kjkxjs/EN/Y2016/V36/I6/38