中国空间科学技术 ›› 2024, Vol. 44 ›› Issue (6): 16-22.doi: 10.16708/j.cnki.1000-758X.2024.0087

• 嫦娥六号探测器和鹊桥二号中继星专题Ⅱ • 上一篇    下一篇

鹊桥二号轨道与嫦娥六号任务匹配性设计和飞行实践

周文艳,高博宇*,董畑姗,刘德成,孙骥,张立华   

  1. 中国空间技术研究院,北京100094
  • 收稿日期:2024-08-09 修回日期:2024-09-18 录用日期:2024-09-28 发布日期:2024-12-03 出版日期:2024-12-05

Matching design of trajectory with Chang′e-6 mission and flighting pratice of Queqiao-2 satellite

ZHOU Wenyan,GAO Boyu*,DONG Tianshan,LIU Decheng,SUN Ji,ZHANG Lihua   

  1. China Academy of Space Technology,Beijing 100094,China
  • Received:2024-08-09 Revision received:2024-09-18 Accepted:2024-09-28 Online:2024-12-03 Published:2024-12-05

摘要: 鹊桥二号整个寿命期间提供中继服务的任务有嫦娥六号、嫦娥七号、嫦娥八号、嫦娥四号,以及国际合作的月球探测任务。为了满足嫦娥六号多发射窗口下各飞行阶段的中继要求,首先从任务分析的角度介绍鹊桥二号中继星为匹配嫦娥六号任务的轨道设计过程和方法,采用环月大椭圆太阳同步冻结轨道满足了嫦娥六号通信距离、通信覆盖、发射窗口和轨道相位的需求;然后在最省燃料约束下,对各阶段轨道的运行方式和轨控策略进行优化,采用四脉冲联合优化的轨控策略,以较少的速度增量大幅改变轨道升交点、倾角和近月点幅角;最后给出了在轨飞行和对嫦娥六号中继支持等情况。鹊桥二号卫星在国际上首次采用月球低能捕获轨道,实现了环月轨道升交点赤经的大幅更改;也是国际上首次采用环月大椭圆太阳同步冻结轨道,实现了对月背南极目标的近距离、长弧段的中继。鹊桥二号飞行结果和轨道设计结果一致,保证了嫦娥六号世界首次月背采样返回任务的成功实施,设计方法可为后续深空探测任务轨道设计提供参考。

关键词: 鹊桥二号中继星, 月球大椭圆冻结轨道, 太阳同步, 飞行和控制, 月球低能捕获轨道

Abstract: Queqiao-2 provides relay services in its overall life cycle for Chang′e-6, Chang′e-7, Chang′e-8, and Chang′e-4 missions, as well as lunar exploration missions from international cooperation. To meet the different relay needs of multiple launch windows and different flight phases of Chang′e-6 mission, the trajectory design method and process of the Queqiao-2 relay satellite to service the Chang′e-6 mission are introduced from the perspective of mission analysis. The adoption of a lunar elliptical sun-synchronous frozen orbit satisfies the requirements for communication range, coverage, launch windows, and orbital phase for the Chang′e-6 mission. Then the trajectory scheme and the control strategy adopted on each flight phase are optimized with minimum fuel constraint. A four-impulse joint optimization trajectory control strategy is employed to significantly alter the orbital ascending node, inclination and argument of perilune with few velocity increments. Finally, the status of the in-orbit flight and relay support for Chang′e-6 mission are shown respectively. For the first time internationally, Queqiao-2 has achieved a significant change of right ascension of the ascending node in lunar orbit by using a lunar low energy capture orbit, and close range and long arc relay of target on the far side of the moon by using the lunar large elliptical sun-synchronous and frozen orbit. The result shows that the in-orbit flight of Queqiao-2 is consistent with that of the design, which ensures the successful implementation of the Chang′e-6 lunar far-side sampling and return mission. The design method can provide a reference for the orbit design of deep space exploration missions.

Key words: Queqiao-2 relay satellite, lunar large-elliptical frozen orbit, sun synchronous, flight and control, lunar low energy capture orbi