中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (1): 88-98.doi: 10.16708/j.cnki.1000-758X.2025.0009

• 空间科学与试验专栏 • 上一篇    

基于经验和物理模型对热层大气密度的评估

岳超1,2,朱俊3,*,刘晓佳1,2,王军4   

  1. 1.西安航天宏图信息技术有限公司,空天环境事业部,西安710199
    2.航天宏图信息技术股份有限公司,北京100080
    3.宇航动力学国家重点实验室,西安710043
    4.北京师范大学地理科学学部,地表过程与资源生态国家重点实验室,北京100875
  • 收稿日期:2023-08-29 修回日期:2023-12-07 录用日期:2024-01-02 发布日期:2025-01-23 出版日期:2025-02-01

Evaluation of modeled thermospheric density by empirical and physical model

YUE Chao1,2, ZHU Jun3,*, LIU Xiaojia1,2, WANG Jun4   

  1. 1.Piesat Information Technology Co., Ltd., Xi’an 710199, China
    2.Piesat Information Technology Co., Ltd., Beijing 100875, China
    3.State Key Laboratory of Astronautic Dynamics, Xi’an, Shananxi 710043, China
    4.State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
  • Received:2023-08-29 Revision received:2023-12-07 Accepted:2024-01-02 Online:2025-01-23 Published:2025-02-01

摘要: 低轨航天器所受的大气阻力与大气密度密切相关。精确计算大气密度,可以减少航天器精密定轨和轨道预报的误差。采用大气密度经验模型MSIS2.0、DTM2020、JB2008以及物理模型TIEGCM2.0,对历史强磁暴、大磁暴和小磁暴期的热层大气密度进行模拟,并分析模拟值与CHAMP和GRACE卫星原位探测数据的差异,评估各模型的表现能力。模拟结果表明:①经验模型的模拟效果优于TIEGCM2.0物理模型,MSIS2.0和JB2008的模拟值分别比卫星原位探测数据高28%~44%和13%~30%,DTM2020的相对误差最小,在-16%~11%之间;②在磁暴开始前或结束后的地磁平静或扰动期,DTM2020的模拟效果最优,其与观测值的中心均方根误差在0.3~0.6之间。在磁暴期,JB2008的模拟效果最优,观测与模拟值的相关系数在0.9左右;③对于物理模型TIEGCM2.0,当空间分辨率从5°提高到2.5°时,模拟结果与观测数据之间的平均相对误差从20%下降至17%。以上研究结果表明,各模型对不同空间环境有不同的适用性。在航天工程应用中,可以考虑多模型结合的方式对大气密度进行计算,以提高轨道计算精度。

关键词: 热层, 大气密度, 磁暴, 经验模型, MSIS, TIEGCM

Abstract: The thermospheric density plays a crucial role in the space environment and is closely related to the atmospheric drag in low-orbit vehicles. Accurately calculating atmospheric density can reduce errors in precise orbit determination and orbital prediction for spacecraft. The thermospheric density was simulated using empirical models (MSIS2.0, DTM2020, JB2008) and physical model TIEGCM2.0 under historical severe, major and minor storms. The simulated density among each model was evaluated by comparing the in-situ satellite observations from CHAMP and GRACE. The simulation results indicate that: The empirical models show better performance than the physical model TIEGCM2.0. MSIS2.0 and JB2008 overestimate the atmospheric density by 28%~44% and 13%~30% compared with satellite observations, respectively. DTM2020 exhibits the smallest differences ranging from-16% to 11%.During geomagnetic quiet or unsettled periods, DTM2020 shows the best performance with a normalized root mean square error of 0.3~0.6. However, JB2008 exhibits the best simulations in geomagnetic active or stormy periods, the correlation coefficient between simulated and observed values is about 0.9. Compared to the TIEGCM with 5° resolution, using 2.5°spatial resolution in TIEGCM can reduce the relative error from 20% to 17%. These results suggest that different models have varying applicability in different space environments. In space engineering applications, considering a combination of multi-model results may improve the accuracy of density and orbit determination.

Key words:  , thermosphere, atmospheric density, geomagnetic storm, empirical model, MSIS, TIEGCM