中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (1): 153-161.doi: 10.16708/j.cnki.1000-758X.2025.0015

• 论文 • 上一篇    下一篇

遥感船只快速目标检测技术及应用

王海涛1,*,贺治钧2,周天启1,马岳1   

  1. 1.中国空间技术研究院 卫星应用总体部,北京100094
    2.中国空间技术研究院 通信与导航卫星总体部,北京100094
  • 收稿日期:2023-04-21 修回日期:2023-12-18 录用日期:2024-01-03 发布日期:2025-01-23 出版日期:2025-02-01

Fast vessel detection technology for remote sensing application

WANG Haitao1,*,HE Zhijun2,ZHOU Tianqi1,MA Yue1   

  1. 1.Satellite Application Department of China Academy of Space Technology,Beijing 100094,China
    2.Institute of Telecommunication and Navigation Satellites,China Academy of Space Techology,Beijing 100094,China
  • Received:2023-04-21 Revision received:2023-12-18 Accepted:2024-01-03 Online:2025-01-23 Published:2025-02-01

摘要: 目前现有的大部分方法对细粒度遥感船只检测识别精度较低,并且星载计算机算力有限,常用的浮点精度数据类型所带来的大量计算和存储需求使其难以满足模型在轨部署的需求。面向这些挑战,提出了一种基于模型量化的细粒度遥感船只快速目标检测方法。首先设计了一种基于融合智能的检测网络,解决了“类内差异大、类间差异小”的难题,可有效提高细粒度船只检测识别的准确度。在此基础上,进一步提出了一种高精度的模型量化方法对裁剪边界实现了优化,可有效提升在轨遥感图像检测识别速度。在多个数据集上的测试表明,所提出检测方法相比于现有研究实现了超过5.9%的最大精度提升,同时量化方法可实现1.2%的最大性能提升,可在降低模型计算量的同时保持较高的精度,可适用于星载计算机的应用。

关键词: 卫星遥感船只检测, 快速目标检测, CNN模型量化, 卫星应用, 深度神经网络

Abstract: Most existing methods have low recognition accuracy for fine-grained remote sensing vessel detection,and the large computation and storage requirements associated with the commonly used floating-point precision data types make it difficult to meet the needs of model in-orbit deployment due to the limited power of on-board devices.To address these challenges,this paper proposed a fast target detection method for fine-grained remote sensing vessels based on model quantization.Firstly,a fusion intelligence-based detection network was designed to solve the problem of“large intra-class differences and small inter-class differences”,which can effectively improve the accuracy of fine-grained vessel detection and identification.On this basis,a high-precision model quantization method was proposed to optimize the clipping boundary,which could effectively improve the inference speed.Experimental test results show that the proposed method achieves a maximum accuracy improvement of more than 5.9% compared with existing studies,while the quantization method can achieve a maximum performance improvement of 1.2%.It can effectively reduce the calculation load while maintaining a high accuracy,thus can be easily applied to satellite-based computing units.


Key words: satellite remote sensing vessel detection, fast target detection, CNN model quantification, satellite applications, deep neural networks