中国空间科学技术

• 智能航天器专栏 •    下一篇

基于模型预测的无扰载荷航天器载荷精编队控制

熊子珺1,2,李青1,*,李伟1,2,刘磊1,2   

  1. 1.西北工业大学 航天学院,西安710072
    2.陕西省空天飞行器设计重点实验室,西安710072
  • 收稿日期:2024-08-20 修回日期:2024-12-10 录用日期:2024-12-13 发布日期:2025-08-05 出版日期:2025-08-05

Precision DisturbanceFree Payload formation control based on modeling prediction

XIONG Zijun 1,2,LI Qing1,*,LI Wei1,2,LIU Lei1,2   

  1. 1.School of Astronautics, Northwestern Polytechnical University, Xi'an, 710072, China
    2.Shaanxi Aerospace Flight Vehicle Design Key Laboratory, Xi'an, 710072, China
  • Received:2024-08-20 Revision received:2024-12-10 Accepted:2024-12-13 Online:2025-08-05 Published:2025-08-05

摘要: 针对空间分布式成像系统复合编队高精度控制需求,以及无扰载荷航天器非接触间隙小导致模块碰撞风险高的问题,提出一种基于模型预测的载荷精编队控制方法。首先,建立无扰载荷航天器模型及主从式复合编队运动模型,在此基础上推导载荷精编队预测模型,设计带有非接触作动器输出和位移约束条件的模型预测控制器,滚动优化求解非接触作动器输出增量,对主从星载荷模块进行高精度控制,并约束作动器运动,实现模块碰撞规避。最后将所提出的精编队模型预测控制方法与LQR控制器进行仿真对比。仿真结果表明所提出控制方法的载荷相对位移及姿态精度可达2.25μm和2.07μrad,较LQR控制器最高可提升82%,且该方法可将非接触作动器运动约束在行程范围内,有效避免了模块碰撞。所提出的基于模型预测的载荷精编队控制方法可为空间分布式成像系统工程实现提供技术参考。

关键词: 无扰载荷, 复合编队, 模型预测控制, 空间分布式成像系统

Abstract: Aiming at the high-precision control of composite formation flying for distributed space imaging systems and high actuator collision risk due to small non-contact gaps of disturbance-free payloads, a precision payload formation control of Leader-Follower configuration for composite formation flying is proposed. First, the service module and payload module models of the Leader and Followers based on disturbance-free payload were established. Subsequently, a predictive model of precision payload formation was derived. The modeling predictive controller considering output constraints and non-contact actuator displacement constraints was designed. A rolling optimization approach was employed to solve for the output increment of the non-contact actuators. Thereby, the high-precision formation control of the payload modules was achieved and non-contact actuators were limited in the stroke to avoid module collision. Finally, the proposed controller was verified and compared with LQR controllers through simulations.The simulation results show that the proposed controller achieves a payload formation precision of 2.25μm for relative displacement and 2.07μrad for relative attitude, representing an improvement of up to 82% over the LQR controller. The proposed precision payload formation control based on model prediction provides a technical reference for the engineering applications of distributed space imaging systems.


Key words: Disturbance-Free Payload, composite formation flying, model predictive control, distributed space imaging system