中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (6): 11-23.doi: 10.16708/j.cnki.1000-758X.2025.0086

• 智能航天器专栏 • 上一篇    

事件触发的航天器在轨自适应故障诊断与恢复

罗懿行1,王涵2,王路桥2,李晓锋1,董晓刚1,*   

  1. 1.北京控制工程研究所,北京100094
    2.西安电子科技大学 计算机科学与技术学院,西安710071
  • 收稿日期:2024-11-16 修回日期:2025-01-16 录用日期:2025-01-30 发布日期:2025-11-17 出版日期:2025-12-01

Event-triggered adaptive fault diagnosis and recovery for spacecraft in orbit

LUO Yixing1, WANG Han2, WANG Luqiao2, LI Xiaofeng1, DONG Xiaogang1,*   

  1. 1.Beijing Institute of Control Engineering, Beijing 100094, China
    2.School of Computer Science and Technology, Xidian University, Xi’an 710071, China
  • Received:2024-11-16 Revision received:2025-01-16 Accepted:2025-01-30 Online:2025-11-17 Published:2025-12-01

摘要: 随着中国航天器在轨数量的快速增长,任务复杂性不断提升,航天器所面临的空间环境日趋多样化,故障诊断与恢复已成为确保航天器安全和可持续运行的关键问题之一。现有的故障诊断与恢复方法通常针对特定类型的故障,并以固化代码的形式存储在星上运行,对于在轨故障突发等场景则依赖大量人工干预和软件维护,距完全自主化尚有较大差距。为解决这一问题并增强航天器对未知故障的弹性适应能力,提出了一种事件触发的航天器在轨自适应故障诊断与恢复框架(EAFDR)。该框架能够有效识别故障事件,实时生成恢复策略并进行安全性验证。EAFDR基于故障事件树模型,采用层次化树结构的故障事件分析技术,对故障事件树按严重程度排序并逐一诊断;随后,依据事件-条件-动作(ECA)映射规则生成故障恢复决策策略,实时应对故障,同时在策略执行期间进行动态监控以保障系统安全性。此外,EAFDR将故障诊断与恢复过程从控制周期中解耦,支持动态修改、维护故障事件树和ECA规则。基于真实系统的地面仿真实验结果表明,EAFDR能够在可接受的计算开销下实现航天器在轨故障的诊断与恢复,为航天器在轨安全、稳定运行提供了有效支持。

关键词: 控制软件, 故障诊断与恢复, 在轨自适应, 事件触发, 故障事件树, ECA规则

Abstract: With the rapid increase in the number of spacecraft in orbit, the growing complexity and diversity of mission requirements and space environment, fault diagnosis and recovery are critical for ensuring spacecraft safety and sustainable operations. However, existing fault diagnosis and recovery methods are typically designed for specific fault types and are stored as fixed code on board, often requiring substantial manual intervention and software maintenance, especially in the event of unforeseen in-orbit failures. These methods are still far from achieving full autonomy. To address this issue and enhance the spacecraft's resilience to unknown faults, this paper proposes an Event-triggered Adaptive Fault Diagnosis and Recovery (EAFDR) framework. EAFDR is based on fault event trees and employs a hierarchical fault event analysis technique, prioritizing fault event trees by severity for diagnosis. It then generates fault recovery strategies through Event-Condition-Action (ECA) rules, enabling real-time responses and dynamic monitoring during recovery to ensure system safety. Furthermore, EAFDR decouples the fault diagnosis and recovery processes from the control cycle, allowing for dynamic modification and maintenance of the fault event tree and ECA rules. Ground-based simulation results from a real-world system demonstrate that EAFDR can diagnose and recover from spacecraft faults in orbit with acceptable computational overhead, providing effective support for the safe and stable operation of spacecraft.

Key words: control software, fault diagnosis and recovery, on-orbit adaptation, event-triggered, fault event tree, event-condition-action rule