中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (6): 111-120.doi: 10.16708/j.cnki.1000-758X.2025.0093

• 论文 • 上一篇    

基于光纤光栅与超声导波的航天器结构疲劳裂纹智能识别

杨宁1,*,李伟1,2,朱慎博1,张建德1,张法业2   

  1. 1.山东航天电子技术研究所,烟台264000
    2.山东大学,控制科学与工程学院,济南250061
  • 收稿日期:2025-03-31 修回日期:2025-05-07 录用日期:2025-05-21 发布日期:2025-11-17 出版日期:2025-12-01

Intelligent identification of fatigue cracks in spacecraft structures based on fiber Bragg gratings and ultrasonic guided waves

YANG Ning1,*,LI Wei1,2,ZHU Shenbo1,ZHANG Jiande1,ZHANG Faye2   

  1. 1.Shandong Institute of Space Electronic Technology,Yantai 264000,China
    2.Shandong University,School of Control Science and Engineering,Jinan 250061,China
  • Received:2025-03-31 Revision received:2025-05-07 Accepted:2025-05-21 Online:2025-11-17 Published:2025-12-01

摘要: 针对航天器结构服役过程中疲劳裂纹的监测问题,提出一种基于光纤光栅与超声导波的航天器结构疲劳裂纹智能识别方法。首先,采用光纤传感被动监测与超声导波主动检测相结合的方式,全面获取航天器结构状态数据。然后,利用堆叠降噪自编码器深度学习网络构建结构疲劳裂纹识别模型,直接从结构状态数据中自适应地提取裂纹损伤特征,并利用深层模型对结构状态与疲劳裂纹之间复杂的映射关系进行表征,实现对裂纹损伤位置、裂纹长度的精确识别。实验结果表明,结构疲劳裂纹识别准确率≥90%,能够满足在轨航天器结构疲劳裂纹损伤自主识别的应用需求。

关键词: 结构健康监测, 疲劳裂纹, 智能识别, 光纤传感, 超声导波

Abstract: Aiming at the challenge of monitoring fatigue cracks in spacecraft structures during service, an intelligent identification method for fatigue cracks based on fiber Bragg gratings and ultrasonic guided waves was proposed in this paper. Firstly, a hybrid approach combining passive monitoring using fiber sensing with active detection via ultrasonic guided waves was employed to comprehensively acquire the state data of spacecraft structures. Then, a deep learning network of stacked denoising autoencoders was adopted to construct a fatigue crack identification model for structures, which could adaptively extract crack damage features directly from the structural state data and represent the complex mapping relationship between the structural states and fatigue cracks with a deep model, achieving precise identification of crack locations and lengths. Experimental results show that the identification accuracy of fatigue cracks in the proposed method is more than 90%, which can meet the application requirement of autonomous identification of fatigue cracks in on-orbit spacecraft structures.

Key words: structural health monitoring, fatigue crack, intelligent identification, optical fiber sensing, ultrasonic guided wave