中国空间科学技术

• • 上一篇    下一篇

用四元数法建立卫星返回运动方程组

张建;   

  1. 北京空间飞行器总体设计部,
  • 发布日期:1990-12-25

ESTABLISHING RECOVERY MOTION EQUATIONS OF SATELLITE WITH QUATERNION RULE

Zhang Jian (Beijing Institute of Spacecraft System Engineering)   

  • Online:1990-12-25

摘要: 通常坐标系间的转换关系及角运动的描述采用欧拉角方法,但该方法的描述在角运动方程中存在不定解问题;在卫星的返回再入过程中,角度变化范围很大,有时很难避开奇点。采用四无数法,可根本解决奇点问题,有效地提高计算的精度和速度。在此基础上,文章建立了卫星返回运动的方程组。

关键词: 运动方程, 计算方法, 再入轨道, 可回收卫星

Abstract: Euler angles are used to describe the angle motion and the relationship between coordinate systems, but there must be a adventitions solution in the angle motion equations when some euler angle is equal to π/2. Usually, attitude angles varied within a large range in all of a process of a satellite reentering, especially ballistic reentering, so it is difficult to avoid the singular point.By adopting a quaternion rule, the singular point problem has been settled once and for all, and the calculating speed and precision have effectivelly been impoved.In this fashion, this paper presents a simple method used to establish reentry motion equations of a satellite.

Key words: Equation of motion, Calculation method, Reentry trajectory, Recoverable satellite