[1]PECK M. Mass properties identification for spacecraft with powerful damping[C]. AAS Paper 99-430, AAS/AIAA Astrodynamics Specialist Conference, Girdwood, Alaska, 1999.
[2]PSIAKI L M. Estimation of a spacecraft's attitude dynamics parameters by using flight data\[J\]. Journal of Guidance, Control and Dynamics, 2005, 28(4): 594-603.
[3]LEE A Y, Wertz J A. In-flight estimation of the Cassini spacecraft's inertia tensor[J]. Journal of Spacecraft and Rockets, 2002, 39(1): 153-155.
[4]BORDANY R, STEYN W H, Crawford M. In-orbit estimation of the inertia matrix and thruster parameters of UoSAT12[C]. 14th AIAA/USU Conference on Small Satellites, Logan, 2000.
[5]TANYGIN S, WILLIAMS T. Mass property estimation using coasting maneuvers[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(4): 625-632.
[6]PALIMAKA J, BURLTON B V. Estimation of spacecraft mass properties using angular rate gyro data[C]. AIAA/AAS Astrodynamics Conference, 1992.
[7]BERGMANN E V, DZIELSKI J. Spacecraft mass property identification with torque-generating control\[J\]. Journal of Guidance, Control, and Dynamics, 1990, 13(1): 99-103.
[8]WILSON E, SUTTER D W, Mah R W. Motionbased mass-and thrusterproperty identification for thrustercontrolled spacecraft[C]. Proceedings of the 2005 AIAA Infotech@Aerospace Conference, Arlington, Virginia, Sep. 2005.
[9]BERGMANN E V, WALKER B K, LEVY D R. Mass property estimation for control of asymmetrical satellites[J]. Journal of Guidance, Control, and Dynamics, 1987, 10(5): 483-491.
[10]PAYNTER S J, BISHOP R H. Adaptive nonlinear attitude control and momentum management of Spacecraft[J]. Journal of Guidance, Control, and Dynamics, 1997, 20(5): 1025-1032.
[11]AHMED J, COPPOLA V T, Bernstein D S. Adaptive asymptotic tracking of spacecraft attitude motion with inertia matrix identification[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(5): 684-691.
[12]林佳伟, 王平. 零动量卫星惯量矩阵的在轨辨识[C]. 北京:中国航天可持续发展高峰论坛暨中国宇航学会第三届学术年会, 2008.LIN JIAWEI, WANG PING. Inorbit identification of the inertia matrix of zero momentum satellite[C]. Beijing:China Aerospace Summit Forum of Sustainable Development and 3rd Annual Meeting of Chinese society of Astronautics, 2008.
[13]DE MOOR B. Total least squares for affinely structured matrices and the noisy realization problem[J]. IEEE Trans. Signal Process. 1994, 42 (11): 3104-3113.
[14]LEMMERLING P. Structured total least squares: analysis, algorithms and applications[D]. ESAT/SISTA, K.U. Leuven, 2001.
[15]ABATZOGLOU T, MEMDEL J, HARADA G. The constrained total least squares technique and its application to harmonic superresolution[J]. IEEE Trans. Signal Process. 1991, 39(5): 1070-1087.
[16]ROSEN J, PARK H, GLICK J. Total least norm formulation and solution of structured problems[J]. SIAM J. Matrix Anal. Appl. 1996, 17(1): 110-126.
[17]KUKUSH A, MARKOVSKY I, VAN HUFFEL S. Consistency of the structured total least squares estimator in a multivariate errors-in-variables model[J]. J. Statist. Plann. Inference, 2005, 133 (2): 315-358.
[18]PINTELON R, SCHOUKENS J. System identification: a frequency domain approach[M]. New York: IEEE Press, 2001. |