中国空间科学技术 ›› 2021, Vol. 41 ›› Issue (3): 97-104.doi: 10.16708/j.cnki.1000.758X.2021.0043

• 技术交流 • 上一篇    下一篇

基于峭度熵与分层极限学习机的动量轮轴承故障诊断研究

刘鹭航1,2,张强2,王虹2,李刚2,吴昊2,王志鹏3,郭宝柱2,*,张激扬1   

  1. 1 中国航天系统科学与工程研究院,北京100037
    2 北京控制工程研究所,北京100094
    3 北京交通大学轨道交通控制与安全国家重点实验室,北京100044

  • 收稿日期:2021-02-01 修回日期:2021-03-02 接受日期:2021-03-03 出版日期:2021-06-25 发布日期:2021-06-25
  • 通讯作者: 郭宝柱:18911899515@163.com E-mail:18911899515@163.com
  • 作者简介:刘鹭航(1984-),男,博士研究生,高级工程师,研究方向为系统工程、健康管理,liuluhang@sina.com。 郭宝柱(1945-),男,博士,教授,研究方向为系统工程,18911899515@163.com。
  • 基金资助:
    国家自然科学基金资助项目基金(U1837602);国家自然科学基金资助项目基金(61803022)

Fault diagnosis for momentum wheel bearing based on spectral kurtosis entropy and hierarchical extreme learning machine

LIU Luhang1,2,ZHANG Qiang2,WANG Hong2,LI Gang2,WU Hao2,WANG Zhipeng3,GUO Baozhu2,*,ZHANG Jiyang1   

  1. 1 China Aerospace Academy of Systems Science and Engineering, Beijing 100037, China
    2 Beijing Institute of Control Engineering, Beijing 100094,China
    3 State Key Lab of Rail Traffic Control & Safety, Beijing Jiaotong University, Beijing 100044, China
  • Received:2021-02-01 Revised:2021-03-02 Accepted:2021-03-03 Published:2021-06-25 Online:2021-06-25
  • Contact: 郭宝柱:18911899515@163.com E-mail:18911899515@163.com
  • About author:刘鹭航(1984-),男,博士研究生,高级工程师,研究方向为系统工程、健康管理,liuluhang@sina.com。 郭宝柱(1945-),男,博士,教授,研究方向为系统工程,18911899515@163.com。
  • Supported by:
    国家自然科学基金资助项目基金(U1837602);国家自然科学基金资助项目基金(61803022)

摘要: 动量轮是卫星姿态控制系统的关键部件,其可靠性直接关系到整星寿命与安全。作为动量轮的核心组件,轴承易于发生故障,且独特结构和复杂运行环境导致监测信号信噪比低,早期故障诊断困难。针对这种情况,对变分模态分解和峭度熵结合的特征提取方法进行研究,获得动量轮轴承监测信号中的微弱故障特征,并建立特征向量。引入分层极限学习机,对结构和编码方法进行优化后用于轴承故障的识别。最后,将提出的方法用于实际故障的诊断,并通过与传统ELM方法比较,得出提出的方法在动量轮轴承故障诊断中具有更高的诊断精度,达到98.5%。

关键词: 故障诊断, 动量轮轴承, 变分模态分解, 峭度熵, 分层极限学习机

Abstract: The momentum wheel is the key component of the satellite attitude control system, and its reliability is directly related to the life and safety of the whole satellite. As the core component of momentum wheel, bearing is prone to failure. Due to its unique structure and complex operating environment, the signal to noise ratio of monitoring signals is low, and early fault diagnosis is difficult. Aiming at this situation, a feature extraction method combining variational mode decomposition and kurtosis entropy was proposed to obtain the weak fault features of momentum wheel bearing monitoring signals and to establish the feature vectors. The layered extreme learning machine was introduced, and the structure and coding method were optimized for bearing fault identification. Finally, the proposed method was applied to the actual fault diagnosis. The comparison with the traditional ELM method shows that the proposed method has higher diagnostic accuracy (98.5%) in the fault diagnosis of momentum wheel bearings.

Key words: fault diagnosis, momentum wheel bearing, variational mode decomposition, spectral kurtosis entropy;hierarchical extreme learning machine

中图分类号: