中国空间科学技术 ›› 2023, Vol. 43 ›› Issue (2): 93-102.doi: 10.16708/j.cnki.1000-758X.2023.0024
杨凯飞,韩笑冬,吕原草,徐楠,宫江雷,李翔
YANG Kaifei,HAN Xiaodong,LYU Yuancao,XU Nan,GONG Jianglei,LI Xiang
摘要: 为解决当前卫星故障检测面临的依赖规则库、多元特征融合不足以及数据正负样本分布不均衡等问题,从卫星数据的时序特性出发,提出基于时序建模的卫星故障检测方法与半监督模型,实现卫星数据规律的有效挖掘与数据驱动的故障检测。考虑卫星数据间的时序关联,提出基于长短期记忆神经网络的卫星故障检测方法,并引入滑动窗口机制实现卫星数据的有效预测与故障检测。考虑卫星数据多元特征参数间的关联关系,引入时间卷积和自编码器神经网络,同时建模不同时刻、多元特征参数间的依赖关系,实现融合多元特征参数进行卫星故障的有效检测。以某型号卫星电源分系统为实验对象,仿真结果表明,所提算法和模型在关键指标方面优于BP神经网络等传统故障检测方法和模型。