中国空间科学技术 ›› 2023, Vol. 43 ›› Issue (6): 91-99.doi: 10.16708/j.cnki.1000-758X.2023.0088

• 空间科学与试验专栏 • 上一篇    下一篇

绕月应急返回轨道的两参数设计

董畑姗,韩潮   

  1. 1 北京空间飞行器总体设计部,北京100094
    2 北京航空航天大学 宇航学院,北京102206
  • 出版日期:2023-12-25 发布日期:2023-12-12

Design of circumlunar emergency return trajectory based on two parameters

DONG Tianshan,HAN Chao   

  1. 1 Beijing Institute of Spacecraft System Engineering,Beijing 100094,China
    2 School of Astronautics,Beihang University,Beijing 102206,China
  • Published:2023-12-25 Online:2023-12-12

摘要: 对于载人月球探测任务,绕月应急返回轨道是地月转移末端保障航天员安全的重要途径。针对绕月应急返回轨道高非线性和高灵敏性的特点,通过引入近月点高度和近月点转移时间两个参数,提出了一种基于伪状态理论和类Lambert问题的绕月应急返回轨道设计方法。该方法建立的模型简单高效,避免了传统方法对整个轨道设计过程的繁重数值迭代,实现了绕月中止轨道的快速高精度设计。利用所提出的两个参数的特点,进一步研究了两参数描述的固定应急点位置和基本再入约束下绕月应急返回轨道的所有可行解,给出了可行绕月应急返回轨道随设计参数变化的规律,并提供了基本约束下参数描述的可行绕月应急返回轨道的全局视图,可为载人月球探测任务顶层任务分析与设计提供参考。

关键词: 载人月球探测, 绕月应急返回轨道, 参数化设计, 伪状态理论, 类Lambert问题

Abstract: For crewed lunar missions,circumlunar emergency return trajectory is a vital way to ensure the crew′s safety for the period near the moon of earth-moon transfer.A design method for circumlunar emergency return trajectory was proposed by introducing two parameters,the perilune altitude and the perilune time,considering the characteristics of high nonlinearity and high sensitivity of the circumlunar emergency return trajectory.Based on the pseudo-state theory and Quasi-Lambert problem,a simple and effective model was developed in this method,so that the heavy numerical iteration of the traditional trajectory design process was avoided.And a high-precision design result was realized efficiently.Further,the two parameters were applied to establish an ergodic representation of circumlunar emergency return trajectories under fixed abort point and basic reentry constraints,and the characteristics of the feasible circumlunar emergency return trajectory changing with parameters were studied.These offer a global view of all feasible circumlunar emergency return trajectories and provide a reference for translunar trajectory selection in subsequent crewed lunar missions.

Key words: crewed lunar mission, emergency return trajectory, parametric design, pseudostate theory, Quasi-Lambert problem