中国空间科学技术 ›› 2024, Vol. 44 ›› Issue (3): 98-110.doi: 10.16708/j.cnki.1000-758X.2024.0043

• 论文 • 上一篇    下一篇

空间点目标神经形态学探测方法

王瑞琳,王立,贺盈波,李林   

  1. 北京控制工程研究所,北京100190
  • 出版日期:2024-06-25 发布日期:2024-06-05

Space point object neuromorphological detection method

WANG Ruilin,WANG Li,HE Yingbo,LI Lin   

  1. Beijing Institute of Control Engineering,Beijing 100190,China
  • Published:2024-06-25 Online:2024-06-05

摘要: 随着在轨航天器面临越来越多的威胁,如何识别并评估这些威胁对航天器正常运行的影响已成为一个迫切需要解决的问题。目前,空间目标的探测和跟踪主要依赖于传统的基于帧的视觉传感器,但这类传感器在实时性和数据量等方面存在不足。与此同时,基于神经形态学的视觉传感器已在运动目标检测和跟踪领域获得广泛应用。由于其获取的事件流数据仅包含视场中变化部分的信息,且具有微秒级的时间分辨率,这使得目标检测和跟踪的速度能够达到微秒级,同时大幅降低了需要处理的数据量。正因为神经形态学视觉传感器的这些优势,它在空间应用领域已成为当前的研究焦点。基于此,提出了一种基于三层脉冲神经网络的空间点目标检测方法——空间点目标神经形态学探测方法,仅使用事件流数据实现对空间点目标的探测和跟踪。主要包括局部运动感知层/全局运动感知层以及输出层,采用分数阶漏积分点火神经元作为基础处理单元,并利用其自适应性抑制事件流数据中的热噪声。通过实际采集的空间点目标事件流数据和公开数据集中的事件流数据进行了验证。在实际采集的空间点目标事件流数据上,去噪滤波部分的事件去噪精度和事件信噪比分别能够达到0.414和-3.036,跟踪部分的总跟踪时长、总跟踪错误次数以及平均跟踪偏差分别达到了9.395s、100以及0.3797。试验结果表明,空间点目标神经形态学探测方法能够从复杂的事件流数据中检测出快速运动的单个或者多个空间目标,并且能够对检测出的空间点目标进行持续的跟踪。

关键词: 空间点目标, 神经形态学, 事件流数据, 目标探测, 脉冲神经网络

Abstract:  As the onorbit spacecraft face more and more threats,how to identify and evaluate the impact of these threats on the normal operation of the spacecraft has become an urgent problem to be solved.At present,the detection and tracking of space objects mainly rely on traditional framebased visual sensors,but these sensors have shortcomings in real-time performance and data volume.Meanwhile,neuromorphological visual sensors have been widely used in the field of moving objects detection and tracking.Due to the event stream data obtained only containing information of the changing parts in the field of view and having a microsecondlevel time resolution,the speed of object detection and tracking can reach the microsecond level,while significantly reducing the amount of data to be processed.Because of these advantages of neuromorphological visual sensors,they have become the current research focus in the field of space applications.Therefore,a space point object detection method is proposed based on a threelayer spiking neural network - space point object neuromorphological detection method,which uses only event stream data to achieve the detection and tracking of space point objects.The main components include a local motion perception layer,a global motion perception layer,and an output layer,using the fractional leaky integrate and fire neurons as the basic processing units,and utilizing their adaptability to suppress hot noise in the event stream data.The method is validated using collected space point object event stream data and event stream data from public datasets.On the collected space point object event stream data,the event denoising precision and event signaltonoise ratio of the denoising filtering part can reach 0.414 and -3.036 respectively,while the total tracking time,total tracking error count,and average tracking offset of the tracking part reach 9.3952s,100,and 0.3797 respectively.The experimental results show that the space point object neuromorphological detection method can detect single or multiple fastmoving space objects from complex event stream data and can continuously track the detected space point objects.

Key words:  , space point object, neuromorphological, event stream data, object detection, spiking neural network