中国空间科学技术 ›› 2024, Vol. 44 ›› Issue (5): 66-74.doi: 10.16708/j.cnki.1000-758X.2024.0074

• 论文 • 上一篇    下一篇

微流控氧化硅纳米流体强化流动沸腾传热

陈洪强,高权,马祥,张永海,魏进家   

  1. 西安交通大学 化学工程与技术学院,西安710049
  • 出版日期:2024-10-25 发布日期:2024-10-21

Preparation of silicon oxide nanofluids via microfluidic for enhanced flow boiling heat transfer

CHEN Hongqiang,GAO Quan,MA Xiang,ZHANG Yonghai,WEI Jinjia   

  1. School of Chemical Engineering and Technology,Xi′an JiaoTong University,Xi′an 710049,China
  • Published:2024-10-25 Online:2024-10-21

摘要: 利用纳米流体增强微通道流动沸腾传热是提高高功率电子设备传热性能的有效方法。然而,传统的纳米流体面临制造过程复杂、稳定性差以及无法控制纳米颗粒尺寸的挑战,对整体传热效率产生负面的影响。开发了一种简单的微流控合成策略,能够以连续、高效和高通量的方式制备高度稳定且尺寸可控的二氧化硅纳米流体。特别设计的螺旋微通道反应器仅需通过流速调节,便可实现连续流一步法合成具有30~110nm可控粒径的稳定纳米流体。流动沸腾传热实验结果表明,在较高的流速下(0.4m/s),较小尺寸的纳米颗粒(≤55nm)的传热性能优于较大尺寸(110nm)的纳米颗粒,对于临界热通量(CHF)和传热系数(HTC)的增强分别达到90.9%和68%。沸腾表面润湿性的提高、表面高效成核以及改善的汽泡动力学特性为传热性能的强化提供了理论解释。这些发现不仅为纳米流体的可控制备提供了新方法,还为航空航天、电力电子等功率器件的高效两相芯片冷却提供了新思路。

关键词: 热管理, 流动沸腾, 纳米流体, 微通道, 强化传热

Abstract: Enhanced microchannel flow boiling heat transfer using nanofluids is an effective method to improve the heat transfer performance of high-power electronic devices.However,conventional nanofluids face the challenges of complex fabrication processes,poor stability,and the inability to control nanoparticle size,which negatively affect the overall heat transfer efficiency.A simple microfluidic synthesis strategy is developed to prepare highly stable and size-controlled silica nanofluids in a continuous,efficient and high-throughput manner.A specially designed helical microchannel reactor enables continuous flow one-step synthesis of stable nanofluids with controllable particle sizes ranging from 30nm to 110nm simply by flow rate adjustment.The results of flow-boiling heat transfer experiments show that at higher flow rates(0.4m/s),the heat transfer performance of smaller-sized nanoparticles(≤55nm) is better than that of larger-sized nanoparticles(110nm),and the enhancement for critical heat flux(CHF) and heat transfer coefficient(HTC) reaches 90.9% and 68% respectively.The enhanced wettability of the boiling surface,efficient surface nucleation,and improved bubble dynamics provide theoretical explanations for the enhanced heat transfer performance.These findings provide not only a new method for controllable preparation of nanofluids,but also new ideas for efficient two-phase chip cooling of power devices in aerospace and power electronics.

Key words:  , thermal management;flow boiling heat transfer;nanofluid;microchannel;enhanced heat transfer