中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (3): 143-153.doi: 10.16708/j.cnki.1000.758X.2025.0046

• 论文 • 上一篇    

基于神经网络的混合异步跳频信号参数盲估计

王雅,袁帅,刘乃金*   

  1. 中国空间技术研究院 钱学森空间技术实验室,北京100094
  • 收稿日期:2024-01-29 修回日期:2024-03-13 录用日期:2024-05-15 发布日期:2025-05-15 出版日期:2025-06-01

Blind parameter estimation of hybrid asynchronous frequency hopping signals based on neural networks

WANG Ya,YUAN Shuai,LIU Naijin*   

  1. Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
  • Received:2024-01-29 Revision received:2024-03-13 Accepted:2024-05-15 Online:2025-05-15 Published:2025-06-01

摘要: 由于优越的抗截获性能和固有的安全特性,跳频信号在卫星通信、卫星测控射频链路、卫星导航系统以及Link16数据链的广泛应用给天基电子侦察带来了极大挑战。在非合作场景中,单通道宽带接收条件下跳频信号检测、参数估计和网台分选是跳频通信侦察的关键技术。跳频图案包含了跳频信号的大部分参数,是参数估计的核心。为了提高宽带混合跳频信号跳频图案全盲预测的准确性和处理实时性,在任务分析的基础上,提出了一种融合时间域和功率域特征的跳频图案盲预测架构。首先以短时傅里叶变换生成的频谱图作为信号检测网络的输入,在多尺度特征图上检测信号,预测信号时频特征,定位信号区域估计相对功率密度特征,然后利用时频特征和相对功率密度特征识别分类信号并预测相应跳频图案。该框架的独特优势在于利用了异步跳频信号跳频周期不同的固有属性和信号相对功率密度差异,无需跳频信号网台先验信息和先验检测锚点,具有很强的泛化能力。所提框架在信号辐射源数量为2的混合强弱跳频信号上识别准确率可达98.77%。实验结果证明了所提框架在混合跳频信号全盲检测、识别、分选以及参数估计等方面的优越性。

关键词: 神经网络, 多源特征融合, 混合异步跳频信号, 信号检测, 参数盲估计

Abstract: Due to its superior anti-interception and inherent security, the wide application of frequency hopping (FH) signals in satellite communications, satellite measurement and control radio frequency links, satellite navigation systems and Link 16 data link has brought great challenges to space-based electronic reconnaissance. In non-cooperative scenarios, wideband FH communication reconnaissance including FH signal detection, parameter estimation, and network sorting under single-channel reception is challenging. The FH pattern contains the most information about FH signals. So it is the core of FH parameter estimation. Based on the task analysis, this paper proposed a blind prediction framework combining time and power domain features to improve the accuracy and efficiency of FH pattern estimation for mixed signals in the wideband spectrum. First, the spectrogram generated by the short-time Fourier transform (STFT) was used as the input of the signal detection network. The signals were detected on the multi-scale feature maps and then the time-equency (TF) characteristics of FH signals were predicted. After signal detection and localization, the relative power density characteristics were estimated based on the pixels in the signal area. Then the TF and power features were used to identify signal categories and predict the corresponding FH patterns. The unique advantage of this framework is that it requires no prior signal information and anchors but exploits the inherent TF and power properties of asynchronous FH signals. It has a strong generalization ability and can adapt to signals of any shape. The proposed framework can achieve a recognition accuracy of 98.77% for mixed signals with 2 FH signal radiation sources. Experimental results demonstrate the superiority of the proposed framework in fully blind detection, identification, sorting, and parameter estimation of hybrid FH signals.

Key words: neural network, multi-source feature fusion, hybrid asynchronous frequency hopping signals, signal detection, blind parameter estimation