中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (3): 19-28.doi: 10.16708/j.cnki.1000.758X.2025.0035

• 空间原位资源利用专题 • 上一篇    下一篇

火星表面地形环境特征及火壤力学特征研究

陈朕,李秀娟,张锐,邹猛*   

  1. 吉林大学 工程仿生教育部重点实验室,吉林长春 130022
  • 收稿日期:2024-09-09 修回日期:2024-12-20 录用日期:2025-01-10 发布日期:2025-05-15 出版日期:2025-06-01

Review of surface environmental characteristics and terrain mechanics of Mars

Zhen, LI Xiujuan, ZHANG Rui, ZOU Meng*   

  1. Key Laboratory for Bionic Engineering Education Ministry, Jilin University, Changchun 130022, China
  • Received:2024-09-09 Revision received:2024-12-20 Accepted:2025-01-10 Online:2025-05-15 Published:2025-06-01

摘要: 为了避免着陆器在火星表面着陆及巡视器探测过程中出现异常情况,并为火星原位资源的后续利用及地面试验中模拟火壤的制备提供参数参考,研究分析了火星表面的地形特征,特别是火壤的物理与力学特性。本文通过总结成功着陆火星的着陆器和巡视器所获取的图像及数据,对火星表面的地形地貌及火壤参数进行系统研究,归纳其环境特征,并整理着陆器和巡视器周围火壤的力学参数范围。此外,对国内外已研制的模拟火壤的性质及其适用性进行了分析,分别提出适用于着陆器和巡视器地面试验的模拟火壤参数范围及选取依据。研究结果表明,火星表面的火壤主要由粒径较小的细颗粒物组成,并含有大量粉尘、土块和岩石碎片,表面多形成脆弱的风化层。表层火壤较为松软,其力学特性与砂土相似,导致巡视器在探测过程中容易出现沉陷异常,影响其正常运行。测得火壤的内聚力范围为0.10~9.0kPa,内摩擦角范围为18°~35°。进一步分析得出,适用于着陆器试验的模拟火壤参数为:内聚力0.24kPa,内摩擦角35°,容重1.52g/cm3;适用于巡视器试验的模拟火壤参数为:内聚力0.50kPa,内摩擦角18°,容重1.10g/cm3。本研究结果可为后续火星探测选址、模拟火壤的加工制作、地面试验,以及火星表面的原位资源利用提供重要参考。

关键词: 深空探测, 火星环境, 地形特征, 火壤参数, 模拟火壤研制, 火星原位资源利用

Abstract: To prevent anomalies during lander touchdown and rover exploration on the Martian surface, and to provide parameter references for the subsequent utilization of in-situ Martian resources and the preparation of simulated Martian soil for ground experiments, this study analyzes the topographical features of Mars, with a particular focus on the physical and mechanical properties of Martian soil. By summarizing images and data obtained from successfully landed missions, this study systematically examines the Martian surface terrain and soil parameters, identifies key environmental characteristics, and compiles the mechanical parameter ranges of Martian soil in the vicinity of landers and rovers. Additionally, the properties and applicability of various simulated Martian soils developed both domestically and internationally are analyzed, and appropriate parameter ranges and selection criteria for simulated Martian soil tailored to lander and rover experiments are proposed. The results indicate that Martian soil is primarily composed of fine-grained particles, with significant amounts of dust, soil clumps, and small rock fragments scattered across the surface, which is often covered by a fragile weathered layer. The upper soil layer is relatively loose, exhibiting mechanical properties similar to sandy soil, making rovers prone to sinking anomalies during exploration, potentially affecting their normal operation. The measured cohesion of Martian soil ranges from 0.10 to 9.0kPa, while the internal friction angle ranges from 18° to 35°. Further analysis suggests that the optimal simulated Martian soil parameters for lander testing are a cohesion of 0.24kPa, an internal friction angle of 35°, and a bulk density of 1.52g/cm3, whereas for rover testing, the suitable parameters are a cohesion of 0.50kPa, an internal friction angle of 18°, and a bulk density of 1.10g/cm3. These findings provide valuable references for future Mars exploration site selection, the development of simulated Martian soil, ground experiments, and the in-situ utilization of Martian resources.

Key words: deep-space exploration, martian environment, topographic features, martian regolith parameters, development of simulated martian terrain, in-resource utilization on Mars