中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (5): 14-21.doi: 10.16708/j.cnki.1000-758X.2025.0072

• 宜居行星探测专题 • 上一篇    下一篇

基于物理约束的分子光谱预测深度模型

高宝全1,全冬晖1,*,胡建萍2,3,潘怡君1   

  1. 1.之江实验室,天文计算研究中心,杭州311100
    2.西安交通大学,物理学院,西安710049
    3.南京大学,天文与空间科学学院,南京210093
  • 收稿日期:2025-03-21 修回日期:2025-05-20 录用日期:2025-05-30 发布日期:2025-09-17 出版日期:2025-10-01

Physics-informed deep learning for molecular spectrum

GAO Baoquan1,QUAN Donghui1,*,HU Jianping2,3,PAN Yijun1   

  1. 1.Research Center for Astronomical Computing, Zhejiang Lab, Hangzhou 311100, China
    2.School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
    3.School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
  • Received:2025-03-21 Revision received:2025-05-20 Accepted:2025-05-30 Online:2025-09-17 Published:2025-10-01

摘要: 精确模拟中红外振动-转动跃迁光谱对于探测外星大气中的生物特征分子和前生物分子至关重要。传统逐线辐射传输方法在广泛参数空间内生成高分辨率光谱时面临巨大的计算成本,这严重限制了实时大气反演和大规模系外行星调查的可行性。提出一种融合物理机理与深度学习的中红外分子光谱智能生成框架,通过构建谱线特征网络物理残差约束架构,实现快速准确的光谱预测,且保证物理现象一致性。创新性地提出了三阶段建模体系:基于参数编码层构建温度-压力与光谱参数的全局关联模型;采用多头自注意力机制解析振转特征的长程相关性;设计物理约束解码器,通过引入线型方程的残差约束模块抑制数据驱动模型的非物理偏差。实验验证表明,该框架利用HITRAN数据库中生物特征分子数据成功重建了分子吸收截面,分辨率可达0.01cm-1,与传统HAPI模拟相比计算速度提升100倍,同时保持光谱保真度。准确保留了线强度和转动温度依赖关系,在多种大气条件下均表现稳定。首次将物理约束融入深度学习光谱生成中,建立了可解释的温度-压力-光谱关联;并支持光化学网络耦合下的生命特征概率评估。为下一代智能光谱数据库建设提供一种高效计算工具,对提升系外行星大气环境分子的表征能力、发展基于光化学网络的生物标志物检测体系具有重要应用价值。

关键词: 系外行星, 中红外波段, 深度学习, 物理神经网络, 光谱

Abstract: Accurate modeling of mid-infrared vibrational-rotational transition spectra is pivotal for detecting biosignatures and prebiotic molecules in exoplanetary atmospheres. Conventional line-by-line radiative transfer methods encounter prohibitive computational costs when generating high-resolution spectra across extensive parameter spaces, particularly limiting real-time atmospheric retrieval and large-scale exoplanet surveys. To address these challenges, a physics-informed deep learning framework was developed for rapid and precise spectral generation. The architecture incorporates three key components: A parameter-encoding layer establishing global correlations between temperature-pressure conditions and spectral line parameters; Multi-head self-attention mechanisms capturing long-range dependencies in vibrational-rotational features; A physics-constrained decoder incorporating residual modules derived from line profile equations to minimize non-physical deviations. The framework demonstrated successful reconstruction of molecular absorption cross-sections from the HITRAN database at 0.01cm-1 resolution, achieving a 100× acceleration compared to conventional HAPI simulations while maintaining spectral fidelity. The framework accurately preserved fundamental spectroscopic principles, including line intensity scaling and rotational temperature dependencies, across diverse atmospheric conditions. This approach represents the first integration of spectroscopic constraints into neural network-based spectral generation, enabling interpretable temperature-pressure-spectral correlations and compatibility with photochemical network- driven biosignature assessments. The method now provides a computationally efficient solution for next-generation spectral databases, significantly advancing molecular characterization of exoplanetary environments and enhancing biosignature detection systems through photochemical network integration.

Key words: exoplanets, mid-infrared, deep Learning, physics-based neural network, spectra