中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (5): 33-48.doi: 10.16708/j.cnki.1000-758X.2025.0074

• 宜居行星探测专题 • 上一篇    下一篇

系外行星成像探测:光学恒星干涉技术

胡晨宇1,2,3,4,刘慧根5,*,张利剑1,2,3,4,*    

  1. 1.南京大学现代工程与应用科学学院,南京210023
    2.智能光传感与调控技术教育部重点实验室,南京210023
    3.人工微结构科学与技术协同创新中心,南京210023
    4.南京大学固体微结构物理国家重点实验室,南京210023
    5.南京大学天文与空间科学学院,南京210023
  • 收稿日期:2025-01-24 修回日期:2025-05-19 录用日期:2025-06-15 发布日期:2025-09-17 出版日期:2025-10-01

The principle of exoplanet detection:optical stellar interferometry

HU Chenyu1,2,3,4,LIU Huigen5,*,ZHANG Lijian1,2,3,4,*   

  1. 1.College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
    2.Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing 210023, China
    3.Collaborative Innovation Center of Advanced Microstructures, Nanjing 210023, China
    4.National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210023, China
    5.School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China
  • Received:2025-01-24 Revision received:2025-05-19 Accepted:2025-06-15 Online:2025-09-17 Published:2025-10-01

摘要: 系外行星探测是现代天文学的重要前沿领域。聚焦光学恒星干涉技术,系统解析其原理,探索其在极近角距、超高亮度对比度恒星-行星系统中的应用潜力,并融合量子信息理论框架,评估其超分辨率成像的可能性。基于经典光场相干性理论,阐述恒星干涉技术的核心原理,分析该技术在双点源系统分辨与复杂天体成像中的应用。通过引入量子参数估计理论,重新审视了双点源分辨问题,探讨量子启发式干涉测量在超分辨成像中的优势。通过多个望远镜组成长基线干涉仪,光学恒星干涉技术可突破单望远镜的衍射极限,实现高分辨率和高对比度的天文成像。特殊的干涉方案,如消零干涉和相位参考干涉测量,在高亮度对比度双星系统成像中展现了重要优势。结合量子信息理论与参数估计框架,量子启发式干涉测量方法能够达到双星分辨和角距测量的量子极限。光学恒星干涉技术通过长基线与特殊干涉构型,可以对高亮度对比度的系外行星实现高分辨率成像。该技术结合量子估计理论,使得双星分辨和角距测量突破直接强度测量的经典极限,展示了其在实现超分辨成像方面的潜力。

关键词: 光学恒星干涉仪, 系外行星, 消零干涉, 相位参考干涉, 量子费雪信息

Abstract: Exoplanet detection is a key frontier in modern astronomy. The fundamental principles of optical stellar interferometry are systematically reviewed and its application in resolving exoplanetary systems with extremely small angular separations and ultra-high brightness contrasts is explored. Its potential for exoplanet detection and super-resolution imaging through the framework of quantum information theory is further assessd. Building on classical optical coherence theory, the core principles of stellar interferometry and its ability to resolve binary point sources and complex astrophysical structures are analyzed. By incorporating quantum information theory and parameter estimation techniques, the problem of exoplanetary system resolution is revisited and the advantages of quantum-inspired interferometric techniques are quantified in achieving super-resolution imaging. Optical stellar interferometry, leveraging multiple telescopes and synthetic apertures, surpasses the diffraction limit of single telescopes, enabling high-resolution, high-contrast astronomical imaging. Specialized configurations, such as nulling and phase-referenced interferometry, offer significant advantages for imaging exoplanetary systems with extreme brightness contrasts. Quantum-inspired interferometry, guided by quantum information theory and parameter estimation, has the potential to exceed classical resolution limits, reaching the quantum limit for resolving binary point sources and measuring angular distances. Optical stellar interferometry enables high-resolution imaging of exoplanetary systems with extreme brightness contrasts through long-baseline arrays and advanced configurations. The proposed approach achieves the quantum limit for resolving exoplanetary systems and measuring angular distances, surpassing the classical constraints of direct intensity measurements and demonstrating its potential for super-resolution imaging.

Key words: optical stellar interferometry, exoplanets, nulling interferometry, phasereferenced interferometry, quantum Fisher information