中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (5): 49-59.doi: 10.16708/j.cnki.1000-758X.2025.0075

• 智能遥感应用专题Ⅱ • 上一篇    下一篇

基于云层与背景解耦的双分支GAN云图像生成方法

李君勇,陈科研,刘丽芹,邹征夏,史振威*   

  1. 北京航空航天大学 宇航学院,北京100191
  • 收稿日期:2024-10-10 修回日期:2025-01-23 录用日期:2025-02-10 发布日期:2025-09-17 出版日期:2025-10-01

Dual-branch GAN for cloud image generation based on cloud and background decoupling

LI Junyong,CHEN Keyan,LIU Liqin,ZOU Zhengxia,SHI Zhenwei*   

  1. School of Astronautics, Beihang University, Beijing 100191, China
  • Received:2024-10-10 Revision received:2025-01-23 Accepted:2025-02-10 Online:2025-09-17 Published:2025-10-01

摘要: 云图像生成是遥感图像生成的一个重要分支,然而,现有方法主要集中在单一云层类型的生成上,在控制云量和云透度方面能力有限,此外耦合理解云层与地面的特征之间的关系,导致生成的云图像缺乏多样性和真实性,难以满足仿真需求。提出了一种基于云层背景解耦的双分支GAN云图像生成方法(DecoupleGAN)。该方法使用两个独立的生成对抗网络,分别学习云层和背景的特征表示。通过根据给定的透明度参数,基于云层背景混合能量成像模型,通过云合成网络将云前景与遥感背景图进行融合。得益于特征学习过程中云层与背景互不干扰,DecoupleGAN能够更有效地提取特征并最终提高生成云图的质量。此外,我们还构建了一个包含多种类型云覆盖的数据集,增强了模型在云生成上的多样性。经验证,所提出的算法在仿真性能方面展现出显著优势。具体而言,该算法的FID值为49.0012,KID值为0.0253,相较于单分支网络分别实现了33.11%和16.98%的性能提升。此外,与现有的云仿真方法相比,该算法能够生成更具真实感和多样性的云类型,并且能够同时生成多种不同的地物背景,从而显著拓展了其应用范围和实用性。DecoupleGAN通过将云层与背景解耦,独立处理两个分支,有效防止了特征学习过程中的相互干扰,从而实现了更为真实和协调的云图像仿真效果。

关键词: 遥感图像, 云生成, 生成式模型, 生成对抗网络, 深度学习

Abstract: Cloud image generation is an important branch of remote sensing image generation. Nevertheless, prevailing approaches predominantly target the production of homogeneous cloud types, offering inadequate control over cloud coverage and opacity. Furthermore, the failure to disentangle cloud attributes and terrestrial features seriously affect the diversity and veracity of the generated cloud images, which cannot meet the simulation requirements.This research introduces DecoupleGAN, a bifurcated GAN framework for cloud image generation based on the decoupling of cloud and background. DecoupleGAN employes a pair of separate GANs to independently capture the characteristic representations of cloud formations and the underlying background. Leveraging a cloud-s with remote sensing backdrops, extracting features with heightened efficiency and no cross-interference, thereby culminating in superior quality cloud imageries. Complementarily, this study also introduces a dataset comprised of varying cloud coverage categories, broadening the generative scope of the model. The algorithm has been verified to exhibit superior performance in simulation, specifically with an FID value of 49.0012 and a KID value of 0.0253, representing performance improvements of 33.11% and 16.98% respectively compared with single-branch networks. Moreover, compared with existing cloud generation methods, this algorithm can generate more realistic and diverse types of clouds, and is capable of simultaneously generating multiple different types of land cover backgrounds, significantly expanding the scope of application and practicality. DecoupleGAN achieves more realistic and harmonious cloud image simulation effects by decoupling the clouds from the background and independently processing the two branches, effectively preventing interference during the feature learning process.

Key words: remote sensing image, cloud generation, generative models, generative adversarial networks, deep learning