中国空间科学技术 ›› 2026, Vol. 46 ›› Issue (1): 111-121.doi: 10.16708/j.cnki.1000-758X.2026.0012

• 论文 • 上一篇    下一篇

金星浮空器太阳电池发电分析

申玉啸1,2,陈康1,杨燕初1,2,杜青3,王生1,2,徐国宁1,2,*   

  1. 1.中国科学院空天信息创新研究院,北京100094
    2.中国科学院大学航空宇航学院,北京100049
    3.北京空间飞行器总体设计部,北京100091
  • 收稿日期:2025-02-26 修回日期:2025-05-13 录用日期:2025-06-04 发布日期:2026-01-09 出版日期:2026-01-30

Simulation andanalysis of Venus aerostat solar cell power generation

SHEN Yuxiao1,2,CHEN Kang1,YANG Yanchu1,2,DU Qing3,WANG Sheng1,2,XU Guoning1,2,*   

  1. 1.Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100094,China
    2.School of Aeronautics and Astronatics, University of Chinese Academy of Sciences,Beijing 100049,China
    3.Beijing Institute of Spacecraft System Engineering,Beijing 100091,China
  • Received:2025-02-26 Revision received:2025-05-13 Accepted:2025-06-04 Online:2026-01-09 Published:2026-01-30

摘要: 以太阳能为能量来源的浮空器是实现金星表面长时间探索较为可行的探测方式。针对金星浮空器设计缺乏金星表面太阳辐射强度和太阳电池发电功率计算模型的问题,首先基于先驱者金星联合探测器测得的不同高度下太阳辐射向下通量数据,使用多项式拟合得到不同高度下金星表面大气透过率的经验计算公式,并参考地球上的太阳电池发电功率计算模型,建立了金星表面的太阳辐射通量计算模型和太阳电池发电功率计算模型,实现了对金星复杂大气环境下不同高度的太阳辐照度的快速精确模拟。然后基于该模型对金星纬度为0°地区0~70km高度下太阳辐射强度及金星探测器在金星表面0km与20km高度处的太阳电池发电情况开展仿真计算,分析了日期、地理纬度、飞行高度、飞行姿态等多个因素对太阳电池发电功率的影响。仿真结果表明,日期对太阳电池发电功率几乎无影响,而地理纬度、飞行高度与飞行姿态对太阳电池发电功率有明显影响。仿真结果符合目前已知的金星大气环境特点,可用于指导金星浮空器的能源系统设计与太阳电池布局。

关键词: 金星, 太阳辐照, 太阳电池发电, 多项式拟合, 仿真分析

Abstract: The aerostat powered by solar energy is a feasible method for longduration exploration of the surface of Venus. To address the lack of a model for calculating the intensity of solar radiation on the surface of Venus and the power generated by solar cells for the design of the Venus Floater, empirical formulas for the atmospheric transmittance at the Venusian surface at various altitudes are derived from polynomial fitting based on the downward solar radiation flux data measured at different altitudes by the Pioneer Venus Multiprobe. Drawing on the power generation calculation models of photovoltaic cells on Earth, a model for calculating the solar radiation flux on the surface of Venus and the power generation of photovoltaic cells has been established. This model enables rapid and precise simulation of solar irradiance at different altitudes in Venus's complex atmospheric environment. The model is then used to simulate the intensity of solar radiation at altitudes from 0 to 70km in the 0° latitude region of Venus and the solar cell power generation of the Venus Explorer (VE) at altitudes of 0km and 20km on the surface of Venus. The impact of various factors, including date, geographical latitude, flight altitude, and flight attitude, on the power generation of photovoltaic cells is analyzed, which can guide the design of energy systems and the layout of photovoltaic cells for Venus surface aerostats.

Key words: Venus, solar irradiance, solar cell power generation, polynomial fitting, simulation analysis