中国空间科学技术 ›› 2022, Vol. 42 ›› Issue (3): 124-131.doi: 10.16708/j.cnki.1000-758X.2022.0043

• 钱学森空间技术实验室十周年专栏 • 上一篇    下一篇

一种多步的基于切换星间测量的多星自主导航算法

周博超,李勇   

  1. 中国空间技术研究院 钱学森空间技术实验室,北京100094
  • 出版日期:2022-06-25 发布日期:2022-06-22

A multi-stage filter for autonomous navigation of formation satellites based on inter-satellite measurements

ZHOU Bochao,LI Yong   

  1. Qian Xuesen Laboratory of Space Technology,China Academy of Space Technology,Beijing 100094,China
  • Published:2022-06-25 Online:2022-06-22

摘要: 针对基于星间测量的多星自主导航问题,从载荷优化和节约成本考虑,提出了一种单套敏感器切换测量的导航方案。建立了该导航方案下的系统状态空间模型,并基于扩展卡尔曼滤波方程给出了导航估计算法。基于多步卡尔曼滤波方法,将集中的滤波算法解耦为多个平行的子滤波器,使计算量降低到原算法的50%以下,并且在切换测量的导航方案下,部分解耦出的子滤波器可以只预测不更新,能够进一步地降低计算负担。给出了多步滤波算法的推导过程,证明了其与标准卡尔曼滤波的数学等价性,故算法的估计性能及计算结果与标准卡尔曼滤波一致,但计算速度有明显提升。最后,通过具体算例给出了算法的仿真验证。

关键词: 自主导航, 切换测量, 多步卡尔曼滤波, 解耦计算, 运算复杂度

Abstract:  Autonomous orbit determination,whose goal is to determine the position and velocity based solely on the sensors onboard the spacecraft,is a basic requirement of autonomous operation in formation satellite systems.Relative position measurement is a practical method in autonomous navigation systems while achieving relative position between multiple satellites needs a great number of sensors.For the purpose of satellite payload optimization,a switching measurement scheme was proposed to reduce the number of sensors needed.A general method of autonomous navigation using relative position is the extended Kalman filter (EKF) algorithm.In order to reduce the computational cost of orbit estimators,the filter was subdivided into several parallel sub-KFs,so called multi-stage Kalman filter (MSKF).In addition,in the switching sensor scheme,part of the sub-KFs could be simplified into state prediction only so that the computation load could be further reduced.The number of floating point operations,i.e. FLOPS,was calculated to compare the computational load of MSKF with that of general EKF algorithm.Simulation result shows that the decoupled algorithm has an equivalent performance in navigation accuracy with a much less computational complexity.

Key words: autonomous navigation, switching sensors, multi-stage Kalman filter, decoupled filter, computational performence