中国空间科学技术 ›› 2025, Vol. 45 ›› Issue (6): 62-70.doi: 10.16708/j.cnki.1000-758X.2025.0089

• 论文 • 上一篇    下一篇

时空参考系对地月观测建模与应用的影响

曹建峰1,*,黄勇2,满海钧1,刘山洪1,张宇1   

  1. 1.北京航天飞行控制中心 航天飞行动力学技术重点实验室,北京100094
    2.中国科学院上海天文台,上海200030
  • 收稿日期:2024-11-11 修回日期:2025-01-10 录用日期:2025-01-20 发布日期:2025-11-17 出版日期:2025-12-01

Comprehensive impact of space-time reference frames on cis-lunar observation modeling and practical applications

CAO Jianfeng1,*,HUANG Yong2, MAN Haijun1, LIU Shanhong1, ZHANG Yu1   

  1. 1.Science and Technology on Aerospace Flight Dynamics Laboratory, Beijing Aerospace Control Center, Beijing 100094, China
    2.Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
  • Received:2024-11-11 Revision received:2025-01-10 Accepted:2025-01-20 Online:2025-11-17 Published:2025-12-01

摘要: 对地月空间探索中时空参考系的高精度应用需求进行研究,量化评估不同时空参考系对地月空间目标轨道确定的影响,为地月空间高精度导航应用提供支持。选取地月空间中的典型轨道作为量化评估对象,构建比对策略,旨在分析时空参考系对其产生的影响。对地月空间内不同时空参考系间的理论差异进行了系统梳理,特别关注了地心天球参考系(GCRS)与质心天球参考系(BCRS)框架下,各类观测数据类型在观测建模上的差异。采用仿真手段,探究了这两种时空参考系对地月空间目标轨道确定所产生影响的具体量级。结果显示,在不同时空参考系下,地基测距与时延的建模差异小于4cm,测速差异小于0.5mm/s。定轨偏差的影响保持在1m以内,星间双向链路建模差异在厘米量级,但单向链路建模差异可达10m。对于要求达到10m级的地月空间目标轨道测定任务,GCRS的应用已足够满足需求。然而,若须实现更高精度的轨道确定,特别是在构建高精度的地月空间时空基准与维持,以及使用星间单向链路数据时,采用BCRS参考系将更为适宜。

关键词: 地月空间, 时空参考系, 观测建模, 轨道计算, 精度分析

Abstract: The study investigates the high-precision application requirements of spacetime reference systems in lunar-Earth space exploration, aiming to evaluate the impact of different spacetime reference systems on the determination of target orbits in lunar-Earth space. Typical orbits within lunar-Earth space are selected as the subjects for quantitative assessment. A comparison strategy for the influence of spacetime reference systems is established. Differences in observational modeling under the frameworks of the Geocentric Celestial Reference System (GCRS) and Barycentric Celestial Reference System (BCRS) are analyzed. Simulation techniques are employed to further explore the specific impacts of these two spacetime reference systems on the determination of target orbits in lunar-Earth space. The results indicate that, under different spacetime reference systems, the modeling differences for ground-based ranging and time delay are less than 4cm, and velocity measurement differences are less than 0.5mm/s. The impact of orbit determination biases remaines within 1m. Modeling differences for inter-satellite bidirectional links are on the centimeter scale, whereas modeling differences for unidirectional links can reach 10m. For lunar-Earth space target orbit determination tasks requiring accuracy at the decimeter level, the application of GCRS is sufficient to meet demands. However, for achieving higher precision in orbit determination, particularly in constructing and maintaining high-precision spacetime benchmarks in lunar-Earth space, as well as utilizing inter-satellite unidirectional link data, the adoption of the BCRS is more appropriate.

Key words: cis-lunar space, spacetime reference system, observational modeling, orbit calculation, precision analysis