中国空间科学技术 ›› 2026, Vol. 46 ›› Issue (1): 198-209.doi: 10.16708/j.cnki.1000-758X.2026.0004

• 论文 • 上一篇    

基于时间延迟积分相机的月球南极光学遥感成像仿真

李孟灏1,陈跃庭1,伏瑞敏2,李奇1,杨居奎2,贾福娟2,徐之海1,*   

  1. 1.浙江大学光电科学与工程学院,杭州 310013
    2.北京空间机电研究所,北京 100076
  • 收稿日期:2024-10-20 修回日期:2025-04-02 录用日期:2025-04-15 发布日期:2025-11-28 出版日期:2026-01-30

Optical imaging chain modeling for the lunar south pole based on time-delay integration camera

LI Menghao1,CHEN Yueting1,FU Ruimin2,LI Qi1,YANG Jukui2,JIA Fujuan2,XU Zhihai1,*   

  1. 1.College of Optical Science And Engineering,Hangzhou,310013,China
    2.Beijing Institute of Space Mechanics and Electricity, Beijing,100076,China
  • Received:2024-10-20 Revision received:2025-04-02 Accepted:2025-04-15 Online:2025-11-28 Published:2026-01-30

摘要: 月球南极已成为月球探测下一阶段的热点,而光学遥感成像是获取月球极地科学信息的一个重要手段。由于月球极地复杂的光照环境,能够动态调整积分级数的时间延迟积分相机是未来月球极地探测的重要光学载荷。基于后向路径追踪方法,结合时间延迟积分相机参数、环绕器轨道、月球极地三维结构、月球极地附近光照情况,构建出了光学遥感的全链路成像模型,模拟出不同参数下的成像结果。所提出的仿真方法不仅适用于月球极地的直接光照区域,也适用于仅能通过二次散射光照明的永久阴影区域。经过与 Lunar Reconnaissance Orbiter (LRO)上搭载的线阵推扫相机的实拍图像对比,对于直接光照区域仿真图像的平均相对误差在 10%以内,并且验证了时间延迟积分相机在永久阴影区域的高分辨成像能力。为以后的月球南极光学遥感探测提供了一种可行的模拟框架,便于辅助研究人员在实际工程中选择合适的参数,具有较高的参考价值。

关键词: 成像链路建模, 时间延迟积分相机, 月球南极, 辐射传输, 光学遥感

Abstract: The lunar south pole has become a focal point for the next phase of lunar exploration, and optical remote sensing is a critical tool for acquiring scientific data about the lunar south pole. Due to the complex lighting conditions at the lunar poles, time-delay integration (TDI) cameras, capable of dynamically adjusting integration levels, are essential optical payloads for future lunar polar missions. This study utilized a backward path tracing method, incorporating parameters of the TDI camera, orbiter trajectory, the three-dimensional structure of the lunar south pole, and the lighting conditions near the poles, to construct a comprehensive optical remote sensing imaging model which simulates imaging results under varying parameters. The proposed simulation method was applicable to regions with direct illumination and permanently shadowed regions, which were illuminated only by secondary scattering light. A comparison with real images from the linear array scanning camera onboard the Lunar Reconnaissance Orbiter (LRO) shows that the average relative error for simulated images of directly illuminated regions is within 10%. The results also validate the high-resolution imaging capability of the TFS camera in permanently shadowed regions. This study provides a feasible simulation framework for future optical remote sensing missions to the lunar south pole,offering valuable guidance for researchers in selecting appropriate parameters for practical engineering applications. 

Key words: imaging chain modeling, time-delay integration cameras, Lunar South Pole, radiosity transfer, optical remote sensing