中国空间科学技术 ›› 2026, Vol. 46 ›› Issue (1): 157-168.doi: 10.16708/j.cnki.1000-758X.2026.0015

• 论文 • 上一篇    

椭圆轨道卫星异面空间碎片追击轨道设计与分析

刘笑1,2,黄京梅1,2,王蕊1,2,*,张小伟1,2,王静吉1,2   

  1. 1.上海航天控制技术研究所,上海201109
    2.上海空间智能控制技术重点实验室,上海201109
  • 收稿日期:2025-03-20 修回日期:2025-07-25 录用日期:2025-07-30 发布日期:2026-01-09 出版日期:2026-01-30

Orbital design and analysis for an elliptical-orbit satellite to chase an out-of-plane target

LIU Xiao1,2,HUANG Jingmei1,2,WANG Rui1,2,*,ZHANG Xiaowei1,2,WANG Jingji1,2   

  1. 1.Shanghai Aerospace Control Technology Institute,Shanghai 201109,China
    2.Shanghai Key Laboratory of Aerospace Intelligent Control Technology,Shanghai 201109,China
  • Received:2025-03-20 Revision received:2025-07-25 Accepted:2025-07-30 Online:2026-01-09 Published:2026-01-30

摘要: 针对大椭圆倾斜轨道卫星对异面空间碎片捕获燃料消耗较大的问题,设计了一种通过电推进行轨道面调整的轨道捕获策略。整个轨道捕获过程分三段进行设计。第一段先进行拱线变轨,然后采用单次椭圆或者双次椭圆转移策略在近地点或远地点施加有限推力控制,以较小的脉冲较快的时间调整至目标轨道,完成部分相位追击。第二段在轨道面交会处采用多圈次的连续小推力电推施加连续控制,进行轨道面的调整,进入目标碎片轨道面。第三段在拱点进行相位末端修正,并对第一段调整的半长轴偏差进行修正。通过详细的理论推导给出了整个轨道捕获策略的控制时机和对应的速度增量,并使用粒子群算法对第二段的点火次数进行了优化。最后,通过实例仿真,验证了该轨道捕获策略的有效性,经分析相同工况下使用电推进行异面变轨的燃料消耗为化推变轨的3.56%。

关键词: 大椭圆倾斜轨道, 空间碎片, 异面轨道捕获, 电推进, 双椭圆转移

Abstract: In order to solve the problem of large elliptical inclined orbit satellite's high fuel consumption in the acquisition of space debris from different planes, an orbital acquisition strategy using electric thruster to adjust the orbital plane is designed. The whole orbit acquisition process is designed in three stages. In the first stage, an apsidal rotation maneuver is executed. Subsequently, a single- or dual-elliptic transfer strategy is employed, applying finite thrust control at either the perigee or apogee. This approach enables adjustment to the target orbit using minimal impulses within a shorter timeframe, thereby achieving partial phase chasing. In the second stage, the continuous low-thrust electric thruster is used to exert continuous control at the intersection of the orbital plane, adjust the orbital plane, and enter the orbital plane of the target space debris. In the third stage, phase terminal correction is performed at the apsis, and the semi-major axis deviation adjusted in the first phase is corrected. The control timing and corresponding speed increment of the whole orbit acquisition strategy are given through detailed theoretical derivation, and particle swarm optimization is used to optimize the number of orbit changes in the second stage. Finally, numerical simulations validate the strategy's effectiveness, demonstrating that the fuel consumption for electric propulsion-based out-of-plane orbital transfer under identical conditions is only 3.56% of that required by chemical propulsion. This approach significantly enhances fuel efficiency while maintaining mission precision.

Key words: large elliptical inclined orbit, space debris, capture of skew orbits, electric thruster, bi-elliptic transfer