中国空间科学技术 ›› 2026, Vol. 46 ›› Issue (1): 185-197.doi: 10.16708/j.cnki.1000-758X.2026.0018
• 论文 • 上一篇
张荔哲,周诠*,肖化超,郑小松,呼延烺
ZHANG Lizhe,ZHOU Quan*, XIAO Huachao, ZHENG Xiaosong, HUYAN Lang
摘要: 为了解决基于神经网络的卫星图像压缩中对复杂特征区域细节丢失的问题,提出一种结合区域感知、变分自编码网络(VAE)量化层隐藏信息的新型压缩算法。优先考虑关键区域质量,同时保持整体压缩率并支持隐蔽数据嵌入。算法首先基于YOLO模型进行重点区域感知,自动识别并提取图像中包含复杂纹理和关键信息的区域。结合ResNet VAE模型将图像映射至潜在空间,在量化空间特征的过程中,将重点区域信息隐藏在背景压缩码流中后再进行熵编码。采用差异化压缩策略,对背景进行激进压缩,对关键区域进行轻度压缩,从而优化整体压缩效率。实验证明,与传统和主流深度学习压缩算法相比,通过潜在功能块重构、空间特征量化与无冗余信息隐藏策略,在平均25倍的压缩比下,全幅图像的PSNR较国际先进压缩算法提升了3~5dB,平均值为35.27dB。重点区域的PSNR达41.15dB,SSIM为0.992,较基线算法提升7.55dB,有效弥补了其他方法在特征细节保留上的缺陷。综合多组卫星图像验证结果显示,算法在不增加码流的情况下提升了压缩效果,并提供了可靠的数据隐蔽与安全传输功能,在高分辨率卫星图像的压缩与敏感区域数据保护方面表现出优越性能,为相关场景数据的高效存储和安全应用提供了一种新颖的解决方案。