中国空间科学技术 ›› 2024, Vol. 44 ›› Issue (5): 127-135.doi: 10.16708/j.cnki.1000-758X.2024.0080

• 论文 • 上一篇    下一篇

基于改进Sage-Husa的GNSS/SINS组合导航系统自适应UKF算法

荆蕾,林雪原,潘新龙,乔玉新   

  1. 1 烟台南山学院 智能科学与工程学院,烟台265713
    2 山东外事职业大学 人工智能学院,威海264500
    3 海军航空大学,烟台264001
  • 出版日期:2024-10-25 发布日期:2024-10-21

Research on GNSS/SINS integrated navigation adaptive UKF algorithm based on improved Sage-Husa

JING Lei,LIN Xueyuan,PAN Xinlong,QIAO Yuxin   

  1. 1 College of Intelligent Science and Engineering,Yantai Nanshan University,Yantai 265713,China
    2 School of Artificial Intelligence,Shandong Vocational University of Foreign Affairs,Weihai 264500,China
    3 Naval Aeronautical University,Yantai 264001,China
  • Published:2024-10-25 Online:2024-10-21

摘要: GNSS/SINS组合导航系统的无迹卡尔曼滤波器(UKF)是以准确的测量噪声统计特性为基础的,当测量噪声统计特性发生变化时,如不对其进行准确的估计,将会导致UKF的滤波性能下降甚至发散。为了解决上述问题,提出了一种基于改进Sage-Husa的GNSS/SINS组合导航系统自适应UKF算法(ISHUKF)。首先,建立了GNSS/SINS非线性组合导航系统的简化UKF模型;然后,在分析组合导航系统中常规Sage-Husa算法存在滤波发散原因的基础上,提出了一种改进的Sage-Husa算法以保证测量噪声估计方差的正定性;最后,进行了GNSS/SINS组合导航系统的仿真实验。实验结果表明,相对于变分贝叶斯算法,ISHUKF对测量噪声方差的估计精度与其大致相同,并且算法更加简单;相对于标准UKF算法,在整个仿真时段内可提高组合导航系统的位置精度、速度精度和姿态精度分别约33%、35%和72%,进而验证了算法的可行性及优越性,并为复杂环境下组合导航系统的滤波方法提供了一种简易的方法。

关键词: 改进Sage-Husa算法, 自适应UKF, 变分贝叶斯估计, 组合导航, 测量噪声方差估计

Abstract:  The unscented Kalman filter (UKF)of GNSS/SINS integrated navigation system is based on the accurate statistical characteristics of measurement noise.When the statistical characteristics of measurement noise change,the filtering performance of UKF will decrease or even diverge if it is not accurately estimated.To solve the above problems,an adaptive UKF algorithm based on improved Sage-Husa (ISHUKF)for GNSS/SINS integrated navigation system is proposed.Firstly,the simplified UKF model of GNSS/SINS nonlinear integrated navigation system is established.Then,an improved Sage-Husa algorithm is proposed based on the analysis of the filter divergence in the conventional Sage-Husa algorithm to ensure the positive quality of the estimation variance of measurement noise.Finally,the simulation experiment of GNSS/SINS integrated navigation system is carried out.The experimental results show that,compared with the Variational Bayesian algorithm,the ISHUKF has roughly the same estimation accuracy for the measurement noise variance,and the algorithm is simpler.Compared with the standard UKF algorithm,the position accuracy,velocity accuracy and attitude accuracy of the integrated navigation system can be improved respectively by about 33%,35% and 72% during the whole simulation period,which verifies the feasibility and superiority of the ISHUKF algorithm and also provides a simple filtering method for integrated navigation system in complex environment.

Key words: improved Sage-Husa algorithm, adaptive UKF, variational Bayesian estimation algorithm, integrated navigation system, measurement noise variance estimation