Chinese Space Science and Technology ›› 2013, Vol. 33 ›› Issue (6): 9-16.doi: 10.3780/j.issn.1000-758X.2013.06.002

Previous Articles     Next Articles

RemoteSensingImageChangeDetectionBasedonWaveletandKernelIndependentComponentAnalysis

 WU  Yi-Quan1,2,3, CAO  Zhao-Qing1   

  1. (1CollegeofElectronicandInformationEngineering,NanjingUniversityofAeronauticsandAstronautics,Nanjing210016)
    (2KeyLaboratoryofAgriculturalInformationTechnology,MinistryofAgriculture,Beijing100081)
    (3JiangxiProvinceKeyLabforDigitalLand,EastChinaInstituteofTechnology,Fuzhou344000)
  • Received:2013-02-20 Revised:2013-05-24 Published:2013-12-25 Online:2013-12-25

Abstract: Inordertofurtherimprovetheaccuracyofchangedetectionofremotesensingimagesbasedonindependentcomponentanalysis(ICA)andtosolvetheuncertaintyproblemofsequenceofimagecomponentsseparatedbyICA,achangedetectionmethodbasedonwavelettransformandkernelindependentcomponentanalysis(KICA)wasproposed.Firstly,theremotesensingimagesweredecomposedbywavelettransform,andpartitionedvectorscomposedofhigh-frequencycomponentsandlow-frequencycomponentswereobtained.Thenthepartitionedvectorsweremappedintoahigh-dimensionalfeaturespacebythekernelfunction,andthemutuallyindependentvectorswereseparatedbyICAinthisspace.Finally,accordingtothedifferencesbetweenthehigh-frequencycomponentsoftheseparatedvectors,thechangecomponentwasdistinguishedautomatically.Experimentalresultsoftheproposedmethodandotherthreechangedetectionmethodsproposedrecentlybasedontheprincipalcomponentanalysis(PCA),ICA,KICAweregiven.Andsomeanalysisandquantitativecomparisonsweredone.Alargenumberofexperimentalresultsshowthattheproposedmethodcanseparatechangeinformationofremotesensingimageswithhigheraccuracy,andtheintelligentchangedetectionisrealized.

Key words: Remotesensingimage, Changedetection, Kernelindependentcomponentanalysis, Wavelettransform