Chinese Space Science and Technology ›› 2015, Vol. 35 ›› Issue (1): 27-35.doi: 10.3780/j.issn.1000-758X.2015.01.004

Previous Articles     Next Articles

RobustAdaptiveFilterforSmallSatelliteAttitudeEstimation

XINGYanjun, WANGYongfu, LUYadong   

  1. (BeijingInstituteofSpacecraftSystemEngineering,Beijing100094)
  • Received:2014-08-13 Revised:2014-11-15 Published:2015-02-25 Online:2015-02-25

Abstract: Theattitudekinematicequationsandmeasurementequationsarethefunctionoftheorbitparameters,sothestandardExtendedKalmanFilter(EKF)can′tgiveoptimalattitudeestimationbecauseoftheorbiterrors,especiallyforamagnetometerbasedsmallsatellite.ArobustadaptiveKalmanfilterwasdesignedtodealwiththedisturbancefromtheorbitestimationerrors.Theprincipleofrobustestimationwasadoptedfortheadaptivefilters,andthecovariancematrixandobservationalnoisewereadjustedtogetproperKalmangains,andthentheapproximatelyoptimalfilteringresultswereobtained.BasedonEKFstabletheory,RAKFwasproveduniformlyandstochasticallystableifthesystemisasymptoticallycontrollableandasymptoticallyobservable.SimulationresultsindicatethatRAKFcanimproveattitudeestimationprecisionfrom0.3°to0.2°,andthefilterisapprovedtobemoreeffectiveandrobustforattitudeestimation.

Key words: Magnetometer, Attitudeestimation, Robustadaptivefilter, Kalmangain, Stability, Smallsatellite