Chinese Space Science and Technology ›› 2017, Vol. 37 ›› Issue (1): 26-32.doi: 10.16708/j.cnki.1000-758X.2017.0010

Previous Articles     Next Articles

Alocalizationalgorithmforadaptivemaneuveringspatialtargets

 LIN  Hao-Shen, LIU  Gang*, HE  Bing   

  1. RocketForceUniversityofEngineering,Xi′an710025,China
  • Received:2016-05-04 Revised:2016-07-28 Published:2017-02-25 Online:2016-11-24

Abstract: Inthespacetargettrackingproblem,themodelmismatchcausedbytargetmaneuveringleadstoserious    hysteresis.Inordertotrackspatialtargetfaster,thesuboptimalfadingparameterofstrongtrackingfilter(STF)wasintroducedinsquarerootcubatureKalmanfilter(SCKF),andtheequivalentformwasderived.Onthebasisofmaneuveringdetection,anadaptivestrongtrackingsquarerootcubatureKalmanfilter(AST-SCKF)whichcombinedtheaccuracyandrobustnesswasdesigned.Theresultsofsimulationshowthatthedifferenceinpositionalaccuracybetweentwoalgorithmsislessthan1%beforethemaneuvering,butafterthemaneuvering,itturnsoutthattheconvergenceaccuracyoftheAST-SCKFwas95.19%higherinpositionand30.50%fasterinvelocity.Meanwhile,theconvergencespeedofAST-SCKFwas57.20%and24.68%fasterthanSCKFintermsofpositionandvelocityrespectively.

Key words: spatialtargetlocalization, maneuveringtarget, bearingonly, adaptivefilter, cubatureKalmanfilter, strongtrackingfilter, suboptimalfadingparameter, maneuveringdetection