Chinese Space Science and Technology ›› 2013, Vol. 33 ›› Issue (6): 9-16.doi: 10.3780/j.issn.1000-758X.2013.06.002
Previous Articles Next Articles
WU Yi-Quan1,2,3, CAO Zhao-Qing1
Received:
Revised:
Published:
Online:
Abstract: Inordertofurtherimprovetheaccuracyofchangedetectionofremotesensingimagesbasedonindependentcomponentanalysis(ICA)andtosolvetheuncertaintyproblemofsequenceofimagecomponentsseparatedbyICA,achangedetectionmethodbasedonwavelettransformandkernelindependentcomponentanalysis(KICA)wasproposed.Firstly,theremotesensingimagesweredecomposedbywavelettransform,andpartitionedvectorscomposedofhigh-frequencycomponentsandlow-frequencycomponentswereobtained.Thenthepartitionedvectorsweremappedintoahigh-dimensionalfeaturespacebythekernelfunction,andthemutuallyindependentvectorswereseparatedbyICAinthisspace.Finally,accordingtothedifferencesbetweenthehigh-frequencycomponentsoftheseparatedvectors,thechangecomponentwasdistinguishedautomatically.Experimentalresultsoftheproposedmethodandotherthreechangedetectionmethodsproposedrecentlybasedontheprincipalcomponentanalysis(PCA),ICA,KICAweregiven.Andsomeanalysisandquantitativecomparisonsweredone.Alargenumberofexperimentalresultsshowthattheproposedmethodcanseparatechangeinformationofremotesensingimageswithhigheraccuracy,andtheintelligentchangedetectionisrealized.
Key words: Remotesensingimage, Changedetection, Kernelindependentcomponentanalysis, Wavelettransform
WU Yi-Quan, CAO Zhao-Qing. RemoteSensingImageChangeDetectionBasedonWaveletandKernelIndependentComponentAnalysis[J]. Chinese Space Science and Technology, 2013, 33(6): 9-16.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: https://journal26.magtechjournal.com/kjkxjs/EN/10.3780/j.issn.1000-758X.2013.06.002
https://journal26.magtechjournal.com/kjkxjs/EN/Y2013/V33/I6/9