中国空间科学技术 ›› 2026, Vol. 46 ›› Issue (1): 59-72.doi: 10.16708/j.cnki.1000-758X.2026.0009

• 低轨巨型星座专题 • 上一篇    下一篇

基于综合效能的低轨异构星座优化设计方法

刘思阳1,潘瑞雪2,李任飞3,蒙涛1,3,*   

  1. 1.浙江大学海南研究院海洋先进技术研究中心,三亚572025
    2.上海卫星工程研究所,上海201100
    3.浙江大学航空航天学院,杭州310027
  • 收稿日期:2025-06-30 修回日期:2025-08-27 录用日期:2025-09-07 发布日期:2026-01-09 出版日期:2026-01-30

Comprehensive performance optimized design methodology for LEO heterogeneous constellations

LIU Siyang1,PAN Ruixue2,LI Renfei3,MENG Tao1,3,*   

  1. 1.Center for Advanced Marine Technology,Hainan Institute of Zhejiang University,Sanya 572025,China
    2.Shanghai Institute of Satellite Engineering,Shanghai 201100,China
    3.School of Aeronautics and Astronautics, Zhejiang University,Hangzhou 310027,China
  • Received:2025-06-30 Revision received:2025-08-27 Accepted:2025-09-07 Online:2026-01-09 Published:2026-01-30

摘要: 异构星座采用不同功能、轨道和载荷的异构卫星组网,其核心能力取决于对地覆盖能力、稳定性与综合成本。对综合效能最优的异构巨星座设计方法进行研究,攻克卫星覆盖能力非线性叠加、漂移轨迹差异化耦合以及巨星座大量参数寻优的难题。在J2和大气阻力摄动下,通过半长轴的线性与二次拟合建立半长轴衰减的高效计算模型,推导升交点赤经与纬度辐角的相对漂移补偿方程。以制造发射综合成本最小化为优化目标构建复杂优化模型,包含重访时间、成像分辨率、覆盖稳定性等多维覆盖约束,以及有限燃料、可选卫星、多任务阶段等多源工程约束。通过原理分析实现关键变量降维,构建基于遗传算法的最小成本标称构型参数优化算法。耦合构型设计与控制方案形成全周期闭环设计框架,实现标称构型优化、局部补偿、燃料规划及控制方案的协同。针对低轨星座30°(N)~0°(N)纬度带覆盖任务(重访时间≤10min,分辨率≤1m),优化构型的成本较传统均匀构型降低26%~30%,且重访时间随地面纬度的波动减小,此优势在近全球覆盖等大纬度跨度场景下进一步扩大。建立的异构巨星座综合设计范式能够实现覆盖效能与综合成本的协同优化,星座规模扩大时具备可扩展性,可支撑千星级星座在应急遥感、全球物联网等场景的高效设计,降低全生命周期的综合成本及设计难度。

关键词: 异构星座, 构型优化, 遗传算法, 覆盖效能, 综合成本, 全流程设计

Abstract: A comprehensive study is conducted on the design methodology for low Earth orbit (LEO) mega-constellations composed of heterogeneous satellites with diverse functions, orbits and payloads. Three critical challenges are addressed, including nonlinear coverage superposition, differentially coupled drift trajectories, and large-parameter optimization. An efficient semi-major axis decay model is developed under the influence of J2 perturbation and atmospheric drag with combined linear and quadratic fitting. Relative drift compensation equations for both the right ascension of the ascending node and the argument of latitude are derived to maintain orbital stability. A complex optimization model is constructed with the objective of minimizing the integrated manufacturing-launch cost, incorporating multi-dimensional coverage constraints such as revisit time, imaging resolution and coverage stability as well as multi-source engineering constraints including limited fuel, selectable satellites, and multiple mission phases. Key variables are reduced through theoretical analysis to improve computational efficiency. A genetic algorithm is employed to determine the cost-optimal nominal configuration parameters. Furthermore, a closed-loop design framework is developed to coordinate nominal configuration, partial correction, fuel planning, and control implementation throughout the constellation lifecycle. For missions targeting coverage between 30°(N) and the equator, with constraints of ≤10min revisit time and ≤1m imaging resolution, the optimized heterogeneous constellation configuration demonstrates a 26%~30% reduction in total cost compared with uniform configurations. Additionally, temporal consistency of revisit time across different latitudes shows improvement. The performance advantage increases with wider latitude coverage. The optimized methodology enables synergistic optimization of coverage performance and cost, supports scalable design of constellations exceeding 1000 satellites for emergency remote sensing and global IoT applications, and contributes to reduced lifecycle cost and design complexity. 

Key words: heterogeneous constellation, configuration optimization, genetic algorithm, coverage performance, integrated cost, full-process design